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Abstract

- The Linear Quadratic Regulator (LQR) can guarantee a
robust closed loop eigenstructure for full state feedback.
The algorithm developed here takes advantage of the stability
guarantees of ILQR to achieve an eigenstructure closea to
desired but within the allowable region of LQR. The algorithm
selects the LQR weighting matrices, Q and R, that minimize the
distance between the elements of the desired and LQR
achievable eigenstructures. The minimization is accomplished
by using a simplex based optimization routine. Specific
weightings placed on the elements of the desired
eigenstructure define the relative importance of each element.
The algorithm is programed in FORTRAN and is designed to be
run from the software package MATLAB. Two examples are
examined to illustrate the use of the program, including a
helicopter flight control system. The results show that this
algorithm is a wvalid technique for achieving robust

eigenstructrue assignment with full state feedback.
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AN ALGORITHM FOR ROBUST EIGENSTRUCTURE

ASSIGNMENT USING THE LINEAR QUADRATIC REGULATOR

I. Introduction

Many current aerospace systems require very complex
control systems to provide the desired performance and
system stability simultaneously. The dynamics of these
system are approximated by mathematical models which are
then used to develop feedback control laws. Most of these
system models require multiple inputs and have multiple
outputs (MIMO). These MIMO models can be broken down into a
series of single input/single output (SISO) subsystems, but
this can make determining the cross coupling effects between
the various SISO subsystems extremely difficult. Classical
control system design techniques, developed prior to the
availability of today's computer capability, often require
multiple input systems to be broken down in this way. These
techniques do not lend themselves to automation through
relatively simple computer programming because many
subjective decisions are required throughout the design
process to achieve the best mix between desired performance
and system stability. The requirement for numerous

subjective decisions makes the control system design for




complex systems excessively cumbersome and time consuming
when using classical design techniques.

Eigenstructure assignment and the Linear Quadratic
Regulator (LQR) are two control system design techniques
that have been developed to produce stable MIMO systems with
good performance characteristics. Both techniques can be
used to develop feedback controls for MIMO systems without
breaking the systems down into SISO subsystems.
Eigenstructure assignment provides the advantage of allowing
great flexibility in shaping the closed loop system response
by allowing specification of closed loop poles and
eigenvectors, but has the disadvantage that stability
robustness is not guaranteed. The LQR technique assures
stability robustness with full state feedback but does not
provide the flexibility of eigenstructure assignment in
placing closed loop poles and eigenvectors. This thesis
develops a method that has the flexibility of eigenstructure

assignment within the stability constraints of LQR.

Background

Eigenstructure assignment is a technique that allows a
control system designer to specify the desired closed loop
performance characteristics of a MIMO system. These
performance characteristics are specified through desired
eigenvalues and eigenvectors, i.e. the desired closed loop
eigenstructure. Moore (1] showed how to exploit the fact
that specifying the closed loop eigenvalues of a MIMO system

2




does not result in a unique solution. Moore further
demonstrated that a specific number of elements of each
eigenvector of a closed loop MIMO system can be freely
assigned. Other papers, including Sobel, Yu, and Lallman
[2] and Garrard and Liebst [3,4], have developed algorithms
to achieve the desired eigenstructures for closed loop
systems. A helicopter flight control system example used by
Garrard and Liebst [3] is used as one example in Chapter 1V
of this report. The validity of eigenstructure assignment
as a flight control system design tool has been
experimentally investigated by Calico [5].

IQR is an optimal control design method that results in
a system with guaranteed robustness. Anderson and Moore [6]
have shown that use of the IQR design method results in gain
and phase margins of at least (-6,«%) db and (-60,60) degrees
respectively. The state and control weighting matrices for
the LQR cost function must be selected by the designer in an
attempt to achieve the desired system performance. The
desired system performance characteristics (or the desired
eigenstructure) often do not lie within the achievable
solution space of IQR. A paper by Innocenti and Stanziola
[7] compares the robustness achievable through
eigenstructure assignment to that guaranteed by the LQR
method.

Other researchers have developed eigenstructure

assignment methods that use LQR. Wilson and Cloutier [8]




developed a technique that minimized a cost function that
provides a tradeoff between desired eigenvalues and
eigenvectors, allowing some flexibility in the number of
elements assigned in the eigenstructure. The algorithm
developed by Broussard [9] minimizes a cost function
involving the feedback gain matrix; however, this method
requires that the gain matrix associated with the desired
closed loop eigenstructure be calculated first. Harvey and
Stein [10] developed a method that uses the asymptotic
properties of LQR to place eigenvalues and uses a linear
projection to determine the achievable eigenvectors. The F-
4 aircraft example used by Harvey and Stein is the first
example used in Chapter IV of this thesis.

This thesis shows the development of an algorithm that
allows a control system designer to achieve closed loop
eigenstructure close to desired within the constraints of
the LQR stability margins. This report is an extension of
the work of Robinson [11]. Robinson developed an algorithm
using the software package MATLAB to provide eigenvalue
placement using the LQR. This thesis enhances Robinson's

work by adding eigenvector assignment as well.

Problem Statement
Consider the state space representation of the

multivariate, linear, time-invariate feedback systen,

X=AX+Bu (1)




and

y=Cx
(2)
where
¥ = n dimensional state vector
u = m dimensional control vector
y = output vector

A, B, C = constant matrices of appropriate dimensions
If linear feedback of all of the state variables is provided

in the form,
u=-Kx (3)

and (A,B) is controllable, a feedback gain matrix, K, can be
found that shifts the closed loop eigenvalues to any desired
location. IQR can be used with a system of this form.
Anderson and Moore [6] have shown that LQR can be used to
assure closed loop stability robustness by minimizing the

quadratic cost function

J=f(xTQx+uTRu) dt (4)
0
where,
Q = designer specified state weighting matrix
R = designer specified control weighting matrix
Letting

K=R'BTP ) (5)
provides the optimal solution where P is a positive definite

solution to the algebraic Riccati equation,
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PA+ATP+0-PBR1BTP=0 (6)

For any positive semidefinite, symmetric Q and positive
definite R selected, a feedback gain matrix K can be
determined that will result in an eigenstructure that
provides stability robustness for the closed loop system.
More simply stated, the resulting eigenstructure will always
fall within an allowable LQR region. It is important to
note that the eigenstructure desired by the designer may not
fall within the allowable LQR region.

The problem is then to place the achievable
eigenstructure close to desired while maintaining the

stability robustness characteristics of the LQR.

Methodology

The solution to this problem is accomplished by

introducing a second quadratic cost function,

J=Y £, (A -2, )2+ (v, -8,v, ) *'F, (v, -8,v,)] (7)

i=1

where

n = number of states

f,, = weighting on the i'" eigenvalue
Ay, = i** desired eigenvalue

A,, = i** achievable eigenvalue

vy, = i*" desired eigenvector

v,, = i*" achievable eigenvector




F,, = diagonal weighting matrix for the i*" eigenvector

0, = real or complex constant that minimizes (v4-0.v,,)
Equation (7) is minimized over the elements of Q and R,
subject to equations (4)-(6). As J becomes small, the
system comes close to providing the desired closed loop
eigenstructure. This method also allows for individual
weightings to be placed on each element of the
eigenstructure. The weightings can be used to allow an
element to move freely (by setting the weighting to zero) or
to place greater emphasis on an individual element (by
setting the weighting to a larger value than other
weightings).

The algorithm is programmed in FORTRAN and interfaces
with the software package MATLAB. Input parameters are
specified in MATLAB and then the compiled FORTRAN program is

called and run from inside MATLAB.

organization
This report is organized as follows:
¢ Chapter II contains the theory involved in the
development of the robust eigenstructure assignment
algorithm. Discussions on eigenstructure assignment
and the LOR method are followed by definitions of
stability robustness and a discussion on LQR stability

margins.




¢ Chapter III develops the robust eigenstructure

assignment algorithm and provides a discussion on the
implementation of the algorithm. Included is a
discussion on the minimization routine used.

Chapter IV provides examples of the use of the
algorithm. Two examples are shown, including the
examples used by Harvey and Stein [10] and Garrard and
Liebst [3] with their eigenstructure assignment
methods.

Chapter V gives conclusions resulting from this study
and recommendations for further work in the area of
eigenstructure assignment using the IQR.

Appendix A contains detailed information on the FORTRAN
subroutines developed by the author that implement this
algorithm.

Appendix B provides a listing of the source code for
the main FORTRAN program and the subroutines developed
by the author. Also included is a listing of the

MATLAB m-file that interfaces with the FORTRAN program.




II. Theory

This chapter introduces the theory used in the
development of the robust eigenstructure assignment
algorithm. Included are discussions on eigenstructure
assignment and the LQR method. The chapter is concluded
with discussions on stability robustness and LQR stability
margins.

All of the discussions in this chapter center around
the state space representation of a multivariable, linear,
time-invariate feedback system of the form already given in
equations (1)-(3). These equations are repeated here as

equation (8)-(10) for convenience.

x=AxX+Bu (8)
y=Cx
(9)
where,
x = n dimensional state vector
u = m dimensional conrtrol vector
y = output vector

A, B, C = constant matrices of appropriate dimensions
Linear feedback of the state variables is assumed in the

form,

u=-Kx (10)



Eigenstructure Assignment [1,12]

Again consider the system of equations (8)-(10) with
full state feedback. Assume the matrix B is of full column
rank and the system is both controllable and observable.
This system can be represented by the block diagram of

Figure 1.

Figure 1 - Block Diagram of the Linear System

The state space representation of the closed loop system
becomes
%=(A-BK)x (11)
The closed loop eigenvalues can be determined from the roots
of the characteristic equation
|A,I-(A-BK)|=0 (12)

Examination of equation (12) shows that, if B is of full
column rank, each closed loop eigenvalue can be influenced
by changing the feedback gain matrix K, regardless of the

number of inputs. If a designer has complete flexibility to
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assign any values to the elements of K, the closed loop
poles can be placed anywhere in the complex plane.

The closed loop right eigenvectors can be determined
from the set of equations given by equation (13) where v, is

the i*" closed loop right eigenvector
[A,I-(A-BK)]v,=0 (13)

Equation (13) can be multiplied by any arbitrary constant 0
without influencing the closed loop system. This arbitrary
constant can be real or complex. Equation (13) can be
rewritten toc provide insight into the ability to assign

values to elements of the eigenvectors.

(A, I-A)v,+BKv,=0 (14)

v,=-(A,I-A) 'B[Kv,] (15)

In equation (15), the matrix (A,I - A)'B is nxm dimensional.
If B is of full column rank, the ability to assign values to
elements of the eigenvectors is then limited by the subspace
spanned by (A,I - A) !B and only m elements of each
eigenvector can be assigned. It is not possible to assign
values to an eigenvector that will cause it to lie outside
of this subspace. The ability to assign specific values to
elements of the eigenvectors is limited in part by the
column dimension of the B matrix, i.e. the number of inputs
to the system. 1In addition, when one element of the

eigenvector associated with a complex pole has been

11




specified, the corresponding element of the eigenvector
associated with the complex conjugate of that pole has also
been specified.

The eigenstructure assignment design technique is to

specify the eigenvalues and associated eigenvectors and to

let
w;=Kv; (16)
Equation (15) may now be rewritten
(A;I-A) v;=Bw, (17)

As already shown, all of the eigenvalues can be placed
exactly, so as long as the desired eigenvectors lie within
the achievable subspace the only unknowns in equation (17)
are the elements of each w;. Equation (17) can be solved
for the elements of the w;,'s. Once the elements of each w,
have been calculated, the gain matrix £ can be determined by
combining the set of n equations from equation (16) into a

single matrix equation. Define the matrices W and V as

w={w, w,...w,] (18)

n

v={v, v,...v,] (19)

n

The matrix V containing the right eigenvectors is often
refered to as the modal matrix. Combining equations (16)

yields

12




W=KV (20)

Since the eigenvectors are linearly independent, the V

matrix is nonsingular and equation (20) becomes

K=wv1! (21)

In practice, the desired eigenvectors are often not
achievable, not lying within the subspace spanned by
(A,I- A)!B. This means that a solution for K that will
yield a closed loop system that has the desired eigenvectors
is not possible. One method to get around this problem is
to project the desired eigenvectors onto the achievable
subspace, minimizing the difference between the desired and
achievable vectors. Other researchers have developed

methods to accomplish this. Liebst, Garrard, and Adams [12]

achieve this by introducing a quadratic cost function J. to
be minimized subject to equation (17), where
Jesi=(vai_vdi) ‘Pi (vai—vdi) (22)

and where P; = diagonal weighting matrix for the i®
eigenvector. Equations (17)-(22) are then manipulated to
solve for W and K matrices that come close to providing the
desired eigenstructure. The ecigenstructure assignment
method, then, provides a means to specifically place
eigenvalues and optimally place eigenvectors for a control

system.

13




The algorithm developed in Chapter III of this report
will introduce a cost function that includes that of
equation (22), but will ensure robust stability by

introducing the LQR as a constraint.

Linear Quadratic Regulator [13:section 6.1]
Refer again to the full state feedback system with

state equation

X=Ax+Bu (23)

and linear feedback of the state variables defined by
u=-Kx (24)

The B matrix is assumed to be of full column rank. As
already discussed, there is a great deal of flexibility in
designating the closed loop eigenstructure, but the
stability robustness of the closed loop system cannot be
assured. LQR provides a means of guaranteeing closed loop
stability robustness. Stability robustness is guaranteed by

introducing the LQR quadratic performance index

J=f(xTQx+uTRu)dt (25)
0

where Q and R are symmetric, non-negative weighting matrices

designated by the control system designer to place relative

importance on the states and controls. Minimizing the IQR

performance index, J, will ensure that the deviations of the

14




states from nominal will be kept small without using
excessive control actions.

To ensure that the LQR performance index is finite, and
therefore has a minimum, it is required that all unstable
states can be made stable and that these states are
reflected in the LQR performance index. Requiring chat the
pair [A,B] be stabilizable will guarantee that all unstable
states can be made stable. Requiringy Q to be positive semi-

definite by letting H be any nxn symmetric matrix such that

Q=HTH (26)
and requiring that the pair [A,H] be detectable ensures that
all open loop unstable modes will be seen in the LQR
performance index. Meeting both of +“ese conditions
guarantees the closed loop svstem will always be stable.

The IQR performance index is minimized when

K=RBTp (27)

where P is the unique positive semidefinite solution to the

algebraic Riccati equation given by

28
PA+ATP+0-PBR1BTP=0 (28)

To use equations (25), (27) and (28), the R matrix must be
invertible and non-negative, and therefore R must be
positive definite (R>0). Defining a symmetric matrix M such

that

15




R=M™™
will ensure that R is positive definite. It can also be

shown that the minimum value cf the LQR performance index is

given by

Jin=XxT(0) Px(0) (30)

Kwakernaak and Sivan [14] provide further discussion on the
algebraic Riccati equation and the gain matrix for
optimization of the LQR performance index.

Use of the IQR optimal solution for the feedback gain
forces constraints on the closed loop eigenstructure of the
system. The closed loop eigenstructure is forced into a
particular "region" subject to equations (27) and (28). The
achievable LQR region is dependent on the A and B matrices
of a given system. A change to the elements of A or B will
result in a different achievable LQR region. For MIMO
systems a closed form solution for the achievable LQR region
is normally not possible. Thus, when selecting a desired
eigenstructure, a designer cannot be assured that a
particular selection will lie entirely within the achievable

LQR region.

Stability Robustness [13:section 3.2]
A closed loop system is said to possess stability

robustness if it remains stable when uncertainties are

16




present. These uncertainties can be modeled in many ways,
including as additive or multiplicative in nature.

Letting G(s) represent a nominal open loop plant and
Gy (s) represent the perturbed plant, additive perturbations

can be modeled as
E,(s)=G,(s) -G (s) (31)

and multiplicative perturbations can be modeled as

En(s) =G (s) [G,(s) -G(s)] (32)
The ability of a system to remain stable in the face of

these uncertainties can be estimated by using two robustness

tests

GLE,(s)]1<g[I+G(s)] (33)

and

0[E,(s)]1<glI+Gt(s)] (34)

where o[] represents the maximum singular value of the
enclosed matrix and o[] represents the minimum singular

value of the enclosed matrix.

Linear Quadratic Requlator Stability Margins [13:chapter 7]
The development thus far has demonstrated that ILQR will

ensure a stable system. The stability robustness
characteristics of the LQR closed loop system will now be

addressed. To investigate the stability robustness

17




characteristics of LQR, refer once more to the full state

feedback system with state equation

Xx=AX+Bu (35)

and linear feedback of the state variables defined by
u=-Kx (36)

Figure 2 shows a simplified block diagram representation of
this full state feedback system. Before continuing with the
discussion of LQR stability, the concepts of the return
difference, independent gain and phase margins, and the

relationship of the Kalman Tnequality must be introduced.

q
i
o
c
x

Figure 2 - Simplified Block Diagram for Closed Loop System

For the single input case, the closed loop transfer

function for the system in Figure 2 is

18




; - -1
TF,, = (Jw; A)'b
1+k(jwI-A) b

(37)

The 1+k(jwI-A)!b term is referred to as the return
difference function, i.e. the output multiplicative
difference returned to the input of the plant. Stability
for single input systems is typically measured using gain
and phase margins [6:section 5.4]. The gain margin is
defined as the amount the gain k can be changed (increased
or decreased) before the closed loop system becomes
unstable. The system becomes unstable when the value of the
return difference is zero. Phase margin is the amount of
phase shift that can be tolerated before the closed loop
system becomes unstable.

For multiple input systems, the return difference
becomes the matrix I+K(jwI-A) !B. The traditional
definitions of gain and phase margin cannot be applied to
mulitiple input systems, so some other measure of system
stability is required. The concepts of independent gain and
phase margins are introduced at this point to provide this
measure of stability. Ridgley and Banda [13] give the
following definitions.

Independent gain margins (IGM) are limits within which

the gains of all feedback loops may vary independently

at the same time without destabilizing the systen,
while the phase angles remain at their nominal values.

Independent phase margins (IPM) are limits within which

the phase angles of all loops may vary independently at

the same time without destabilizing the system, while
gains remain at their nominal values.[13:3-73)

19




Ridgley and Banda [13:chapter 3] also derive the following

equations for IGM and IPM

1 1

——— <IGMK (38)
1+a 1-a

and
—Zsin’1L%)<IPM<Zsin'1L%) (39)

where a is the minimum singular value of the return

difference matrix given by
a=1Rtg[ 1K (jwI-a) 1]

and a¢<1l. It should be noted that these equations for the
MIMO stability margins are based on errors that are
multiplicative in nature and they are conservative. A
system may be able to accept more gain and phase change than
the IGM and IPM reflect.

The following relationship, known as the Kalman
Inequality, can be derived using the state equation (8), the
optimal gain equation (27), the algebraic Riccati equation

(28), and the restriction that Q > 0

1 1 1 1

[I+RZK(jwI-A)"'BR 2]*[I+R2K(jwI-A)'BR 2|>T (41)

A detailed derivation of the Kalman Inequality is given by
Ridgely and Banda [13: chapter 7].
Up to this point the only restriction on R is that it

be positive definite. First consider the special case where

20




R=pI, where p is any scalar value. The Kalman Inequality

for this case now reduces to

1 -1 1 -1 (42)
[(I+p 2K(jwI-A) 'Bp 2]*(I+p?K(jwI-A)Bp 2]>T
Because p is a scalar, it cancels out of the equation
leaving
[T+K(jwI-A) B]*[I+K(jwI-A) 1B} >T (43)

This inequality is true if and only if equation (44) is true
where g(] indicates the minimum singular value of the matrix
inside the brackets which is the return difference matrix in

this case

a=g[I+K(jwI-A) 'B] 21 (44)

This equation is of the form of equation (33), and therefore
is a test for stability robustness. Recalling that the
derivations for IGM and IPM are valid for « < 1, a = 1 can
be substituted into equations (38) and (39) to determine the

minimun limits of the LQR stakility margins.

%(IGM(& (45)

-60° < IPM<60° (46)

Safonov and Athans [15] have shown that any diagonal R will
result in the same stability margins as long as the
perturbations in each channel occur independently of one

another. The perturbations can be considered independent as
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long as the diagonal elements of R have the same relative
magnitudes. Equations (45) and (46) are the guaranteed
stability margins for LQR with independent perturbations and
R diagonal.

For the case of any general R, the independent
stability margins, as calculated by equations (38) and (39),
cannot be guaranteed and often will go outside of these
bounds. However, as previously mentioned, the equations for
IGM and IPM provide conservative values. While the choice
of any general R may not provide the guaranteed stability
margins of equations (45) and (46), the system may still

provide acceptable stability characteristics.
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III. Robust Eigenstructure Assignment Algorithm

The algorithm developed in this section provides a
designer the capability to achieve a closed loop
eigenstructure close to desired. The resulting system will
also have an eigenstructure within the achievable LQR
region. The algorithm places the eigenstructure by
minimizing the combined distance between the elements of the
desired and LQR achievable eigenstructures. If the desired
eigenstructure is not within the allowable LOR region, the
algorithm will find the gain matrix, K, that achieves a
closed loop eigenstructure close to desired. The designer
must provide a weighting for each element of the
eigenstructure to designate the relative importance of
achieving each element. The algorithm is programed in
FORTRAN and is designed to be run from the software package

MATLAB.

Algorithm Equations

A quadratic performance index, J, is introduced to be

minimized, where
_ n
J=Y £, (A=A, )2+ (v, -8,v,)°F, (v, -8,v,)] (47)
i=1

and,
n = number of states

f,, = weighting on the i*" eigenvalue
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Ay, = i*" desired eigenvalue
A, , = i*" achievable eigenvalue
Vy; = i*® desired eigenvector
v,; = i* achievable eigenvector

F,,; = diagonal weighting matrix for the i'" eigenvector

0, = real or complex constant that minimizes (v, ,-86,v, )
Minimizing J will minimize the combined distances between
the elements of the desired and LQR achievable
eigenstructure. The weightings, f,, and F,, allow the
designer to specify the relative importance of achieving
indiQidual elements of the eigenstructure. Assigning a
weighting of zero to any desired element will leave the
algorithm free to place that element to any necessary value.

As already discussed in Chapter II, the closed loop

system of Figure 1 can be written as

x=(A-BK) x (48)

Using the optimal LQR gain of
K=R™'BTP (49)

the closed loop system becomes
x=(A-BR'BTP) x (50)

The achievable closed loop poles, A,, are the eigenvalues of

Ao =(A-BR'BTP) (51)

and the achievable right eigenvectors are given by the
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solution of

(A, I-(A-BR'BTP)]v,=0 (52)
The A and B matrices are fixed for a given system, so the
designer can only influence the closed loop eigenstructure
by varying R and P. However, P, the positive definite
solution of the algebraic Riccati equation, is a function of
both R and Q. Recall that to ensure that R>0 and Q20, the

symmetric matrices M and H were introduced such that

R=M™™ , Q=HTH (53)
The designer's ability to influence the closed loop
eigenstructure usiry LQR design is then limited to varying
the symmetric mitrices M and H. Because M and H are
symmetric, tne number of paramaters available to be varied
is limited to the upper triangular portion of each matrix.
If . is restricted to pI or diagonal then the number of
paramaters is reduced further.

One further relationship was derived for use with this
algorithm. It was shown in Chapter II that the eigenvectors
of a matrix can only be determined up to an unknown constant
and that constant may be either complex (for complex
eigenvectors) or real (for real eigenvectors). Let 0,
represent this unknown constant for the i'" eigenvector.
Normalizing the eigenvectors to a length of one reduces the
possibilities for 6, to +1 for the case where the

eigenvectors are real. One value will minimize the
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eigenvector contribution to J and other will maximize the

contribution. The normalized eigenvector becomes

Complex eigenvectors must also be normed to unit
length, but the unknown constant can take on any complex
vaiue with a magnitude of one. If the value of 8, is not
determined the algorithm may spend excessive time converging
to, or not achieving, the desired eigenvector when it
possibly has already found an equivalent vector. The sum of
the squared error between the elements of the it desired
and achievable eigenvector can be defined as E;, given by

E=1Y |v,-8,v, |*] (55)

k=1
where the eigenvector is normalized to a length of one and
7*=4 (cosd,+7sing,;) (56)

0,=zte

To decrease the computational time, it is desirable to

minimize E; with respect to ¢, since E, can be written
n
E;=Y |vy - (cosd;+jsing;) v, |? (57)
k=L

The error, E;,, is an extremum with respect to ¢, when its

partial derivative is equal to zero, or

26




1 =0 (58)

Seperating each element of the i'" desired and achievable
eigenvectors into real and imaginary components (denoted by

subscripts R and I, the error can be rewritten

< . , 59
E;=Y, [(v, -v,cosd,+v, sind,) ?+ (v, -v, ccsd,-v, sind;) ?] (59)
k=1

The partial derivative of E; with respect to ¢, can then be

% E ( R R I I I R R I

A solution is now possible for ¢, and is given by

n
Z ( Va,Vd,” VaIVd,) k
$,=tan"y X1 (61)

n
kE (Vo Va,*Va,Va,) &
=]

Equation (56) is then used to calculate €,. Both the
positive and negative values of 6, must be checked to
determine which minimizes and which maximizes the
eigenvector's contribution to J. The constant 6, must be
calculated for each eigenvector.

All of the required equations are now in place to

program the algorithm.
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Programing Considerations

The robust eigenstructure assignment algorithm was
programmed in FORTRAN (double precision) using both existing
and newly developed routines. The main program is called
EIGSPACE. The FORTRAN program interfaces with the software
package MATLAB through an m-file. The routines used are

briefly discussed here.

Existing Subroutines - Several subroutines that were

already in existance were used in programming this
algorithm. These routines are called by the subroutine
EAFUNC. These routines are part of a package of subroutines
called LQGLIB on the AFIT computers. The LQGLIB routines
are adaptations of routines from Alphatec, Inc and are
documented in [16]. The subroutine REG is called by EAFUNC
to calculate the LQR optimal gain matrix K. The subroutine
EIGVV is used to calculate the closed loop eigenstructure.

Subroutine MMUL is used to carry out matrix multiplication.

Newly Developed Suboutines - Each routine developed for

this algorithm is briefly described here. Appendix A
contains more detailed information on each routine,
including a listing of each.
¢ EAFUNC - This subroutine, called by FMINS, calculates
the value of the performance index J. To achieve this
other routines are called to solve for the closed loop

eigenstructure for a given M and H.
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¢ FMINS - This subroutine is called by the main program
and is based on the Nelder-Mead simplex algorithm
(17:298-308]. It calculates a vector X that minimizes
a given function. The function to be minimized is
subroutine EAFUNC in this case.

¢ FMINSTEP - This subroutine is called by FMINS and is a
part of the Nelder-Mead simplex algorithm. It
calculates each subsequent iteration in the search to
minimize J.

¢ MAKEQR - This subroutine is called by EAFUNC to build
the positive semidefinite Q and positive definite R
matrices from the vector X. The elements of X are the
upper triangular portions of the symmetric matrices M
and H.

¢ SORT - This subroutine is called by the main program
and EAFUNC. It sorts the eigenvalues in ascending
order of magnitude then puts the weighting matrices Fe

and Fv and the modal matrix W in the same order.

Program Flow - The program can be broken down into the
hierarchical structure shown in Figure 3. The general flow
of each level of the program is discussed here.

LEVEL 1 - The function LQREA.m provides the interface
between MATLAB and the executable FORTRAN file.
Function LQREA.m reads user input from MATLAB,
generates an input file, runs the executable
FORTRAN file, and reads the FORTRAN output.
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LEVEL 1 - MATLAB Interface, LQREA.m
I
LEVEL 2 - Main FORTRAN Program, EIGSPACE

!
LEVEL 3 - Minimization Routine, FMINS
I
LEVEL 4 - Minimization Iteration Step
| FMINSTEP
{
LEVEL 5 - Calculate Performance Index
EAFUNC

Figure 3 - Computer Program Hierarchy

LEVEL 2 - FORTRAN program EIGSPACE and the subroutines it
calls contain the robust eigenstructure assignment
algorithm. The program reads the input data file
generated by LQREA.m. To simplify the
minimization routine, the upper triangular
portions of M and H are put into a single vector
X. The initial guess, XGUESS, is made equivalent
to R=I and Q=I. An initial call is made to FMINS.
Because FMINS may find only a local minimum,
XGUESS is set equal to the returned X vector and
FMINS is called again. In many cases the _cecond
pass through FMINS rroduces a significant
reduction in J. The improvement on subsequent
passes to FMINS is possible because FMINS uses a
simplex search technique that does not rely on the
calculation of gradients. This will be discussed
further in the discussion of LEVEL 3 of the
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LEVEL 3

program. The calls to FMINS continue until the
reduction in J is within the user specified
tolerance. Subroutine EAFUNC is then called using
the best X vector and the output file is written.
As already mentioned, FMINS is a simplex based
minimization routine. An initial simplex is
created based on XGUESS. The first column of the
simplex is XGUESS. The other columns are
determined by adding an increment to each element

of XGUESS such that
X;=XGUESS+cC; j=2,3...(nx+1) , 1i=1,2 (62)

where nx is the dimension of X and ¢, is

calculated from one of the two following equations

a (le_x+—l+nx-l) , C2=—_L_1 (\/le*l_l) (63)

nxynx+1 nxynx+1

In equations (63), a=constant (0.5 for this
report). The choice of c; is defined by Table 1.
The values of c; and c, remain constant for any
problem size (nx) so the search in FMINS always
starts over a wide range of X vectors. The
routine converges to a local minimum for the space
spanned during the search. Changing XGUESS begins
the search over a different set of vectors,
possibly spanning additional space, so it is often

possible to find a minimum other than the one
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TABLE 1

Constants Added to XGUESS to Build Initial Simplex

k \ 2 3 . . . nx nx+1
1 c, c, . . . C, C,
2 C, Cy C, . . C, C,
. . c, .

. . . C,

nx-1 c, c, . . c, c, c,
nx C, C, . . c; c, c,

achieved during the previous passes through FMINS.
It is hoped that enough space is spanned to find
the global minimum, but this is not guaranteed.
Subroutine EAFUNC is called to calculate the value
of the performance index for each column of the
simplex. Calls are then made to subroutine
FMINSTEP until the convergence criteria of
Equation (64) is within the user specified
tolerance, tocl. The vectcr X in equation (64) is
the average of the X vectors in the simplex not

including the one yielding the wrrst performance

index and is calculated using equation (65).

- (X

WOZSt—

X)? (64)
<tol

nx+1
[E (Xj"?) 2
EJ=

J=1

nx
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LEVEL 4

nx+1
( Z Xj) _Xworsc (65)
J=1

nx

X=

The X vector producing the smallest J is returned
to the main program.

Subroutine FMINSTEP calculates each subsequent
itteration in the search to minimize J. a
reflected point is calculated first using the

following equation

Xret'lected=y(+at (X—Xwozst) (66)
where a, is a positive constant (a value of 1.0
was used for this report). If X, si.ctea Produces

the smallest of the current values of J, an

expansion point is calculated

Xoxpansion=X*Y e (Xreriectea—X) (67)
where y, is a positive constant (a value of 2.0
was used for this report). The current vector
producing the worst value of the performance index
is then replaced with the vector (expanded or
reflected) producing the lowest value of J. If
the reflected point did not produce the lowest
performance index then a contracted point is
calculated in one of two ways:

1) If the reflected point prcduced a J higher
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LEVEL 5 -

than all of the current values

XcontracteaX B (X-Xyorsr) (68)
2) If the reflected point produced a J better
than the highest value, but not better than
the lowest then a contracted point is

calculated in the following way

Xconczacted=)—<_Bc (?_Xreflected) (69)

The constant B. must lie between zero and one (a
value of 0.5 was used for this report). If the
reflected or contracted points produce an
improvement in J over any of the current points,
the vector producing the worst value is replaced
by the better of X..fioctea ANA X.ontractedar ILIf NO
improvement has been acheived, then all of the
points are moved one half the distance to the best

vector.

Subroutine EAFUNC calculates the value of the
performance index J for a given vector X. Recall
that X contains the upper triangular protions of
the symmetric matrices M and H. The subroutine
MAKEQR is called to convert X to the matrices Q
and R. The subroutine REG from LQGLIB is called
to calculate the optimal feedback gain matrix K

for the current R and Q matrices. The subroutine
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EIGVV, also from LQGLIB, is then called to
calculate the closed loop eigenstructure. The

value of J is then calculated.

Using the Program

The program is run by using the function LQREA from

within MATLAB. The command takes the following form

(Q.R,P,A,,V, 08,7 =LOREA(A,B,A,, Fe, V,, Fv, tol, rcode)

The user must provide the following inputs by defining them
in MATLAB

e A and B

¢ A, - diagonal matrix containing the desired eigenvalues

¢ Fe - a diagonal matrix containing the weightings for

each eigenvalue
¢ V, - the desired modal matrix
¢ Fv - a matrix containing the eigenvector weightings;

columns of Fv correspond to columns of V,

tol - convergence tolerance (default is 107%).

¢ rcode - a code to specify what type of R matrix to use
rocde=1, R=pI

rcode=2, R=[diagonal]

rcode=other, R>0

Available outputs from the program are:
® Q - IQR state weighting matrix

® R - LQR control weighting matrix

35




¢ P - unique positive definite solution to the algebraic
Riccati equation
¢ A, - diagonal matrix containing the acheivable closed
loop eigenvalues
¢ 8 - diagonal matrix containing the eigenvector
difference minimization parameter
® J - The final value of the performance index
The program normalizes the eigenvectors to one, so to avoid
division by zero each column of the desired modal matrix
must have at least one nonzero element. The program is
configured to handle a system with up to 10 states and up to

10 inputs.
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IV. Examples

Two aircraft control sytem examples are examined in
this chapter to demonstrate the capability of the robust
eigenstructure assignment algorithm. Example 1 is a F-4
lateral inner loop used by Harvey and Stein [10] and later
by Robinson [11:554-564]. The algorithm results are
compared to results obtained by both Harvey and Stein and by
Robinson. Example 2 is a YAH-64 helicopter flight control
system used by Garrard and Liebst [3]. The algorithm
results are compared to the results obtained by Garrard and
Liebst, whose method acheived exact pole placement and good
eigenvector assignment but without the stability robustness

guarantees of the IQR.

Example 1 - F-4 lateral Inner Loop

As already mentioned, the algorithm developed in this
report is an extension of the work done by Robinson.
Robinson compared the results of his pole placement
algorithm to results from a method developed by Harvey and
Stein using an F-4 example. This example is used here for
two purposes: 1) validate the pole placement portion of the
FORTRAN program in this report through comparison to
Robinson's results, and 2) compare this algorithm's results
for complete eigenstructure assignment to Harvey and Stein's

complete eigenstructure assignment results. The states and
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controls for the F-4 lateral-directional inner loop, as

defined in the paper by Harvey and Stein, are

(D, - stability axis roll rate]
r, - stability axis yaw rate
B - sideslip angle

¢ - bank angle

3, - rudder deflection

)

a - @lleron deflection

8,. - rudder command
u = ,
8,. - aileron command

The A and B matrices are

[-.,746 .387 -12.9 0 .952 6.05 ]
.024 -.174 4.31 0 -1.76 -.416
_| .0o06 -.999 -.0578 .0369 .0092 -.0012
A=l 0 0 0 0 0
0 0 0 0 -20 0
0 0 0 0 0 -10
‘0 o]
0 0
o o
B=1o o
20 0
| 0 10

Harvey and Stein used the asymptotic properties of LQR to
achieve eigenstructure assignment with the control weighting
matrix restricted to R=pI. The Q matrix is selected and the
value of p is allowed to approach zero. This forces the

feedback gains to become large, approaching infinity. This
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is a disadvantage of their method because m of the poles
(the actuator poles in this case) approach infinity. They
monitor the eigenstructure as p tends to zero (or gain tends
to infinity) and select the system that produces an
eigenstructure close to desired. 1In the example by Harvey
and Stein, they set the open loop actuator poles artifically
low (-10 and -5) to compensate for this disadvantage.

Except where noted, the actuator poles here are moved to the
more accurate values of -20 and -10 to provide a better

representation of the actual open loop system.

Comparison to Robinson's Results

The pole placement portion of the algorithm developed
in this report differed from Robinson's algorithm only in
that this work is programed in FORTRAN. Robinson's
algorithm was programed as a MATLAB m-file. Table 2 shows a
summary of the pole placement results from this F-4 example
for both programs with R=pI. As expected, the results from
this algcrithm (with eigenvector weighting Fv=[0])
essentially duplicated the results obtained by Robinson.

The FORTRAN program was able to acheive a slight improvement
in the performance index J for this case. All of the other
examples reported by Robinson were also run with the FORTRAN
program (again, with Fv=[0]). The FORTRAN program either
duplicated Robinson's results or made a slight improvement

in J for each case.
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TABLE 2
Comparison to Robinson Pole Placement Results
F-4 Example, R=pI

Robinson FORTRAN
MODE A, MATLAB m-file Program
Roll
Subs. -4.0 -3.998 -4.004
Dutch -.63 * j2.42 -.669 * j2.365 -.653 * j2.375
Roll
Spiral ~-.05 -.091 -.059
Rudder -20 -20.053 -20.027
Act.
Aileron -10 -10.025 ~10.007
Act.
J - .014 .006
K -.306 -~-1.389 .729 .039 .107 -.089
MATLAB .409 .858 =-.060 .035 =.044 .239
m-file
K -.304 -1.356 .592 .049 .103 -.077
FORTRAN .399 .781 .181 .021 -.038 .236
Porgram

The FORTRAN program produced significant improvements
over Robinson's MATLAB based routine in the required
computational time. Both rcutines were run on a VAX
computer. For this F-4 example the FORTRAN program took
approximately 19 minutes (clock time) to produce the results
in Table 2 compared to a clock time in excess of 3 hours
using the MATLAB based routine. The FORTRAN also made
similiar time improvements on other examples of various
size. In general, the FORTRAN program improved required
computational time over the MATLAB based routine by a factor
of approximately ten.
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Comparison to Harvey and Stein Method

Robinson provided a comparison between his pole
placement results and the poles achieved with the Harvey and
Stein method [10]. Harvey and Stein also attempted to shape
eigenvectors with their method. The desired eigenvectors
used by Harvey and Stein were not in the achievable LQR
region. As a result, a tradeoff is required between the
desired poles and the desired eigenvectors. The addition of
eigenstructure assignment to the Robinson algorithm now
allows for a more valid comparison between this method and
the Harvey and Stein method.

Harvey and Stein determined the achievable eigenvectors
through a linear projection of the desired vectors onto the
achievable subspace. With their method, as the value of p
approaches zero, the closed loop eigenvectors approach the
achievable projection of the desired vectors. The final
design is selected as the gain matrix that yields the closed
loop poles closest to the desired values.

Some comments are warranted on the selection of desired
eigenvectors. 1In selecting desired eigenvectors, Harvey and
Stein split the two eigenvectors for the complex conjugate
dutch roll poles into one real vector and one imaginary
vector with different elements allowed to float in each
vector. For example, the real part of one desired
eigenvector element may be allowed to float while the

corresponding imaginary part of that element is assigned a
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fixed value. The algorithm developed in this report
requires that an eigenvector remain intact with the real and
imaginary parts of each element either both designated or
both allowed to float. As the following results will
indicate, this does not proves to be a disadvantage. With
these comments in mind, Table 3 shows the desired
eigenvectors for this F-4 example.

TABLE 3
Desired Eigenvectors for F-4 Lateral Inner Loop

Roll Dutch Rudder? Aileron?®

State Subs. Roll Spiral Actuator Actuator
P- 1 0 X X X
r, 0 .707° £ joO X x X
i} 0 .707 + jo?® 0 X X
¢ x 0 1 X X
3, X X X X X
5, X X X X X
Notes: 1) x's denote elements that are free to float. These

values were set to zero in most cases and given zero
weighting in all cases to run the FORTRAN program (see
note 2)

2) Actuator eigenvectors were given weightings of zero in
all cases. Values specified for these eigenvectors
are to prevent division by zero in the algorithm.

3) Harvey and Stein allow these elements to float.

Harvey and Stein selected these desired eigenvectors for the
following reasons. It is desirable to have the roll

subsidence mode show up predominatly in roll and not in yaw,
so the elements corresponding to yaw rate and sideslip angle
are set to zero. For the dutch roll mode, Harvey and Stein
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desired no oscillatory motion in the roll axis, thus the
desired elements corresponding to roll angle and roll rate
are set to zero. Harvey and Stein desired no sideslip in
the spiral mode, so that element was set to zero for the
spiral mode eigenvector.

Tables 4 and 5 summarize the results obtained -1sing the
robust eigenstructure assignment algorithm and the results
from the Harvey and Stein method.

TABLE 4
Results from Robust Eigenstructure Assignment Algorithm for

F-4 Example (R=pI)
Open Loop Actuator Poles of -10 and -5

Roll Dutch Rudder Aileron
Subs. Roll Spiral Actuator Actuat.
A, -3.994 -.678+32.383 -.051 -20.001 -10.001

Achievable Eigenvectors

P .850 -.020%j.005 -.051 .072 -.518
r, -.017 .606%3.098 .037 -.089 -.002
B -.004 .009+j.228 .008 -.004 -.000
¢ -.213 .002+3.008 .998 -.004 -.052
5, .078 .251%3.422 .015 -.990 -.212
8, -.463 .132+3.550 .007 -.078 .827
Jvec=.874 J,=.007 J=.881

K -.014 -.714 1.126 ~.001 .548 .072

.525 .406 -2.934 .026  .065 .846

For this comparison, the original Harvey and Stein open loop
actuator poles of -10 and -5 were used. The desired poles

remain &s shown in Table 2. Unity weightings were assigned
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TABLE 5
Results from Harvey and Stein Method for F-4 Example

Roll Dutch Rudder Aileron
Subs. Roll Spiral Actuator Actuat.
A, -3.810 -.727+j2.358 -.049 -22.44 -10.43
Acheivable Eigenvectors
Ps .857 ~-.087%3.081 -.049 -.035 -.523
r, -.005 .61033.068 .037 .078 .027
B -.001 .093%§.231 .000 .003 .003
¢ -.226 -.021+.043 .998 .002 .050
S, .105 .295%3.400 -.001 .996 -.044
5, -.451 .145+3.526 ~-.007 -.029 .849
T vec=-.94 J,=6.17 J=7.11
K .132 .882 -1.576 -.026 ~-.681 .026

-.524 -.420 2.827 -.021 .031 -.860

Notes: 1) All eigenvectors normed to omne.
2) Dutch roll eigenvectors are multiplied by #; as calculated by equations (56) and
(61).
3) Performance index calculations done using equations (47) using the same
weightings used for the robust eigenstructure assignment results.

to each desired element with a fixed value. Desired
elements of the eigenvectors that were allowed to float were
assigned weightings of zero. Thus, the following weightings

were used in the robust eigenstructure assingment algorithm

[1

Fe=(111111] Fv-=

N
O OorFr OO
oo oo oo
o o0 0 o o o

O 0 0o & P
O O R PP R

-

Comparison of the results from the two methods shows that
the robust eigenstructure assignment algorithm yielded
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values much closer to desired than the Harvey and Stein
method. In particular, the robust eigenstructure assignment
algorithm achieved poles and eigenvectors much closer to
desired than the Harvey and Stein results. The values of
J,.. in Tables 4 and 5 are the eigenvector contributions to
the performance index J in equation (47). Likewise, the
values of J, are the closed loop pole contributions to
equation (47). The large value of J, in Table 5 is mainly
due to the large difference between the Harvey and Stein
desired and achievable actuator poles.

The use of the more realistic open loop actuator poles
of -20 and -10 in the Harvey and Stein method would likely
result in extremely large values for the closed loop
actuator poles. The robust eigenstructure assignment method
developed in this thesis does not suffer from the same
deficiency. The algorithm was run again for R=pI with unity
weighting using the realistic open loop actuator poles. The
results for this case are shown in Table 6. The non-zero
value of J in Table 6 shows that the desired eigenstructure
was not achievable using the algorithm. Assuming that the
algorithm was able to find a global minimum for J, this
indicates that the desired eigenstructure in not within the
achievable LQR region. However, it may be possible to
improve on the closed loop eigenstructure through variations
on the weightings assigned to the various eigenstructure

elements.

45




TABLE 6
Results from Robust Eigenstructure Assignment Algorithm for
F-4 Example (R=pI)
Open Loop Actuator Poles of -20 and -10

Roll Dutch Rudder Aileron
Subs. Roll Spiral Actuator Actuat.
A, -3.996 ~-.955+3j2.088 -.070 -20.158 -10.002

Achievable Eigenvectors

Ps .845 -.163%+j.035 -.067 .039 .543
r, .005 .563%3.193 .037 -.086 -.035
B .001 .174%3.193 .002 -.004 -.004
¢ -.211 .043%3.058 .997 -.002 -.054
5. .137 .382%j.382 .003 -.995 .003
8§, -.473 .269%3.426 -.007 .027 -.837
Jyec=.848 J,=.457 J=1.305

K -.175 -1.089 .951 .022 .089 -.072

.539 .562 =-2.649 .031 -.036 .336

When the desired eigenstructure lies outside of the LQR
achievable region, the designer must make tradeoffs between
the desired eigenstructure elements. Because not all of the
eigenstructure elements lie within the achievable subspace
for this case, varying the weightings to place greater
emphasis on any particular elements will produce a tradeoff.
Weighting the dutch roll poles more heavily than the other
elements will move those poles closer to desired, but will
result in other elements moving further from desired. If
the pole location is of greater importance than the
decoupling of the states in the dutch roll eigenvectors,
then those poles should be weighted more heavily than the
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other elements. Table 7 presents results from the algorithm
with weightings of 10 placed on each dutch roll pole and all
other weightings remaining the same as before. The closed
loop dutch roll poles moved much closer to desired, but the
decoupling of roll and yaw was sacrificed in the dutch roll
eigenvectors. Increasing the weighting on the dutch roll
poles also moved the other poles a small distance further
away from desired. Further variations on the weightings
between the poles and eigenvectors resulted in similar
tradeoffs between elements.

TABLE 7

Results from Robust Eigenstructure Assignment Algorithm
for F-4 Example with Heavier Weighting on Dutch Roll Poles

(R=pI)
Roll Dutch Rudder Aileron
Subs. Roll Spiral Actuator Actuat.
A, -4.023 -.703%32.331 -.154 -20.321 -10.053
Achievable Eigenvectors
P. .793 -.664%7.225 -.151 -.053 .519
r, .085 .459%j.163 .032 .087 -.001
] .021 .117+j.163 -.030 .004 -.001
¢ -.197 .167+3.234 .983 .003 -.052
5, .354 .176%3.291 -.058 .995 .197
5, ~-.446 .102+3.148 -.071 .017 -.830
JTyec=2.124 J,=.380" J=2.504
K -.310 -1.194 .947 .081 .101 -.056
.487 .819 -1.314 .099 -.028 .297

" The error for dutch roll poles is multiplied by weights of 10.
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Removing the R=pI restriction allows the robust
eigenstructure assignment algorithm to place the closed loop
eigenstructure more closely to the desired structure.

Table 8 presents results fo: the R={diagonal] case, and
Table 9 presents results for the case where R>0. In both
cases the eigenstructure weightings used were the same as
those used for the R=pI case.

TABLE 8

Results from Robust Eigenstructure Assignment Algorithm
for F-4 Example with R=[diagonal]

Roll Dutch Rudder Aileron
Subs. Roll Spiral Actuator Actuat.
Aa -3.997 -.811+3j2.095 -.054 ~-20.169 -10.004
Achievable Eigenvectors
Ps .851 -.054%3.016 ~.054 -.061 -.541
r, ~-.026 .571z3.209 .037 .088 .030
) -.006 .173%3.209 .003 .004 .003
) -.213 .015+3.020 .998 .003 .054
8. .053 .31653.361 .004 .993 -.033
5. -.477 .278%7j.496 -.004 -.043 .838
Jec=.878 J,=.240 J=1.118
K -.068 -.877 .751 .022 ,078 .Q35
.519 .448 -2.78 .024 .033 .330

For the case where R is allowed to be diagonal, Table 8
shows that the algorithm was able to achieve closed loop
poles much closer to desired (J,=.240) than the R=pI case

(J,=.457) while still yielding nearly the same eigenvector
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decoupling. For this case the algorithm returned a R matrix

with significantly different diagonal elements (order of

magnitude 10). The values returned were
41.588 0
R =
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Figure 4 F-4 Example Minimum Singular Values for Variations
of R Matrix

As discussed in Chapter II, the large difference in the two
diagonal elements of R indicates that the perturbations
cannot be considered to reside in each individual channel
and the independent stability margins of equations (45) and
(46) not are guaranteed. Figure 4 shows a plot of the
minimum singular value of return difference matrix for the
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case where R=[diagonal] as well as for R=pI and R>0.
This figure shows that the diagonal R does not possess the
independent stability margins guaranteed by R=pI. The
stability margins for case R=[diagonal] are IGM=[.545,6.024)
and IPM=[-49.3,49,3) degrees.

The results for the case where R>0 were as expected.
As can be seen from Table 9, this case acheived the best
overall placement of the closed loop eigenstructure.

TABLE 9

Results from Robust Eigenstructure Assignment Algorithm
for F-4 Example with R>0

Roll Dutch Rudder Aileron
Subs. Roll Spiral Actuator Actuat.
A, -3.992 -.675%32.376 -.054 -20.005 -10.003

Achievable Eigenvectors

P. .837 -.014+3j.004 -.054 -.051 ~-.543
r, -.025 .5783%3.207 .037 .088 .034
B -.007 .139+3j.207 .003 .004 .004
¢ -.210 .003%3.005 .998 .003 .054
5, .193 .1703j.457 .004 .995 -.009
3, -.467 .230+j.520 -.004 -.008 .837
Jvec=+878 J,=.008 J=.886
K -.265 -.761 1.748 .004 .048 ~-.143

.544 .445 -3.034 .026 .006 .347

The control weighting matrix returned by the algorithm for

this case was
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_[3.838 2.303
" 12.303 2.499

The cost for this impirovement was a decrease in the
independent stability margins. The plot of Figure 4 shows
that this case produced the lowest minimium singular value
of the return difference matrix of all of the cases. The
stability margins for this case are IGM=[.611,2.745] and

IPM=[-37.1,37.1] degrees.
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Example 2 - YAH-64 Type Helicopter
Garrard and Liebst [3] used a flight control system

similar to the YAH-64 helicopter at hover flight conditions
to demonstrate the use of their eigenstructure assignment
method. Their method achieved exact pole placement and

minimized the quadratic performance index given by

Tes,= (Va;=Vgy) TP (V= Vgy) (22)

to place the closed loop eigenvectors close to desired. The
Garrard and Liebst method does not provide any stability
guarantees.

The eight states and four controls for this helicopter

model are defined as follows

nl

forward velocity (ft/sec) |
lateral velocity (ft/sec)
downward velocity (ft/sec)
- roll rate (rad/sec)

- pitch rate (rad/sec)

- yaw rate (rad/sec)

- roll angle (rad)

- pitch angle (rad)

PO NQ T T <O

u, - collective pitch (°)

u, - longitudinal cyclic pitch (°)
u, - lateral cyclic pitch (°)

u, - tail rotor collective pitch (°)

The states and controls are non-dimensionalized by dividing
by the maximum expected values at hover conditions. This
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results in the following non-dimensional state and control

vectors

x,,~T,x , Uu,,~T,u (70)

where T, and T, are transformation matrices and are given by

lLoa 0 0O 0 0 0 0 0
0 .04 O 0 0 0 0 0
0 0 .04 0 0 0 0 0
_— 0 0 0 2.865 0 0 0 0
1 0 0 0 0 2.865 0 0 0
0 0 0 0 0 2.865 0 0
0 0 0 0 0 0 2.865 0
e 0 0 0 0 0 0 2.865]
L1110 0 0
0 .067 O 0
T, =
0 0 .114 ©
0 0 0 054

Equations (70) can be substituted into equations (8) and
(10) resulting in

Xog= T AT, ' Zpg* T\ BT, 'Upg  ,  Upg=~T,KT, Xy (71)

The non-dimensional A, B, and K matrices then become

A =T,AT,"* , B =T.BT;' , K, ~T,KT, (72)
[-.0286 -.0637 .0205 .0032 .1113 -.0036 O |
.0779 -.2310 .0059 -.1157 ~.0014 -.0229 .4468
.0046 -.0257 -.2610 -.0053 .0314 .0306 .0223
a | $5658 -3.5812 .6804 -2.7000 -.1340 -.6620 0
ad | 3366 .8458 .0143 -.0092 -.7500 .0244 0
.2793 -.3510 .0573 -1.0500 .4130 -.4000 O
0 0 0 1.000 -.0051 .1030 0
0 0 0 0 .9990 .0499 0
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Bnd=

.1566
-.0569
-.15372
-1.1294
.1857
2.0628
0
0

.3456 ~-.0399 -.0007 |
.0812  .1718  .2087
.0345 -.0087 .0009
-2.5785 16.2195 4.2402
-4.3405 -2.2562 -.1007
.4169 5.0137 -2.4116
0 0 0
0 0 0

Table 10 shows the resulting open loop eigenstructure.

Notice that the four poles associated with side and forward

velocity are unstable.

Also,

the yaw and heave modes form

a complex conjugate pair which will result in cyclic motion

coupled in the yaw and vertical axes.

In the open loop

eigenvectors there is significant coupling between the

states.

TABLE 10

Open Loop Eigenstructure for Helicopter Example

Side Forward

Roll Pitch Velocity Velocity Yaw/Heave

b ~3.2610 -.9760 .0820+3.6296 .1100xj. 5147 -.2588+3.0428
Open Lonp Eigentractors

u -.0024 .3605 -.0462£5,3103 -.04622).4723 -.0244%3.1983

-.0784 .0102 -.2171£3.1269 -.0978+5.1297 .0616x3.0923
w -.0012 .0525 .00402j.0241 .0082+3.0341 -.0849x+j, 5468
p -.8923 .0373 .1334%3.2352 -.0066%j.1424 .0850%3.0084
q .0268 -.6131 -.0234x3.2872 .0666+3.2828 .0488=5.0270
r -.3407 .3338 .3382+3.4070 L 4026xj.2892 -.7740%).1488
@ .2B44 -.0767 - 2699%3.3026 -.1982%3.1083 -.0231%:.0234
[ -.0030 .6104 .4785+3.0727 .5862%3.0431 -.0257%3.0793

Desired Eigenstructure - The desired eigenstructure

selected by Garrard and Liebst is shown in Table 11.
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Garrard and Liebst selected desired eigenvalues based on
helicopter handling qualities requirements put forth by Hoh
[18]. The real desired eigenvalues were selected to provide
bandwidths of 3.0 rad/sec for roll, 2.9 rad/sec for pitch,
3.0 rad/sec for yaw, and 1.0 rad/sec for vertical velocity
(heave) .

TABLE 11
Desired Eigenstructure for Helicopter Example

Side Forward
Roll Pitch Velocity Velocity Heave Yaw
bW -3.5 -2.9 -.802%+j.388 - .801%j.387 -1.0 -3.0
Desired Eigenvectors
u 0 X 0 1 0 0
v X 0 1 0 0 0
w 0 0 0 0 1 0
p .9615 0 pd 0 0 0
q e .9454 0 X 0 0
r 0 0 0 0 0 1
¢ -.2747 0 x 0 0 0
g 0 -.3260 0 x 0 0

Note: x denotes elements free to float

Selection of the desired eigenvectors was made to
provide decoupling of the states in the various mode
responses. For the eigenvector associated with roll, the
roll rate element was given a magnitude of one. The bank
angle was set to the inverse of the roll eigenvalue due to

assuming a response of the form
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b=ce*t so d;=p=3.ce“ then 4>=§

The side velocity element for the roll eigenvector is
allowed to float because during rolls some sideslip is
inevitable and not considered objectionable. The other
elements of the roll eigenvector are set to zero to minimize
the content of those states in the roll response. The
desired pitch mode eigenvector was selected based on the
same reasoning used for the roll mode eigenvector. The
eigenvectors associated with the two complex conjugate
eigenvalue pairs were selected to decouple the lateral and
longitudinal states in those modes. The heave and yaw
eigenvectors were selected to produce modes with pure heave

and pure yaw respectively.

Garrard and Liebst Results - Table 12 shows the final

achievable eigenvectors and feedback gain matrix obtained by
Garrard and Liebst for full state feedback. Recall that all
of the poles were placed exactly with their method. The
eigenvectors in Table 11 show excellent decoupling between
the states. The independent stability margins resulting
from this design are IGM=(.599,3.03) and IPM=(-39.1,39.1)
degrees.

The results that follow show that the desired
eigenstructure does not lie within the LQR region obtainable
with the robust eigenstructure assignment algorithm. The
objective of using the robust eigenstructure assignment

56




TABLE 12
Garrard and Liebst Helicopter Example Results for Full State

Feedback
Side Forward
Roll Pitch Velocity Velocity Heave Yaw
Achievable Eigenvectors
u .0024 -.1381 .0118F3.0303 .46143230 -.1003 -.0112
v .0830 -.0235 L4737%30 .0093x3.0332 -.0181 -.0386
w 0 -.0293 -.0376x3.0193 -.0024%30 .9939 -.0028
P .9577 .0041 .3720%3.4473 .0408+3.0377 .0088 ~.0065
q .0001 .9357 .0084+3.0581 - .4350F3.4154 -.0280 -.0073
r -.0002 -.0036 -.0028+3.0056 -.0192%3.0085 -.0014 . 9986
¢ -.2736 .0003 -.5343%3.2705 -.0606%5.0184 -.0088 -.0321
2 0 -.3223 -.0369%3.0549 .6440%3.2075 .0280 ~-.0142
Kig -.1503 -.0403 -.5008 -.0047 .03586 -.0225 -.0747 . 1554
.9957 -.2973 . 0060 -.0086 -.7554 -.0873 -.1458 -1.2972
.1794 -.0131 .0857 .0138 -.0278 .1674 .2489 -.1189
.3170 .0018 -.2408 .4557 -.3460 -.7669 L4082 -.3841

Note: ALl values in this table are nondimensionalized

algorithm with this example is then to obtain an
eigenstructure close to desired but with improved stability
margins over the Garrard and Liebst achievable closed loop

eigenstructure.

Robust Eigenstructure Assignment Algorithm Results - To

determine if the desired poles were achievable, this case
was first run with zero weighting on the eigenvectors
(Fv=(0]). The algorithm was able to place all of the poles
very near the desired values (J=.0002). Next, all of the
desired eigenvector elements with assigned values were given
unity weighting as well to determine if the complete desired
eigenstructure was within the achievable region. Table 12
presents results for this case with R>0. A fully populated

R matrix was selected to allow maximum flexibility in
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placing the eigenstructure. The results in Table 13 show
that the complete eigenstructure is not achievable using the
rohbust eigenstructure assignment algorithm. The closed loop
poles in Table 13 are relatively far from desired
considering they are known to be nearly achievable. The
roll, pitch and yaw poles are nearly identical for this
case. The achievable eigenvectors also show much more
coupling between the stite= than desired. Variations on the
weightings used for the algorithm can be used to get a more
acceptable closed loop eigenstructure.

TABLE 13

Robust Eigenstructure Assignment Algorithm Results for
Helicopter Example with Unity Weighting and R>0

Side Forward
Roll Pitch Velocity Velocity Heave Yaw
‘s -3.3430 -3.3137 -.8957+3.6347 -.7272%3.1326 -1.249 -3.3142
Achievable Eigen.ectors
u .0181 -.1128 -.000823.0023 .4955%30 -.1429 .0782
v .0755 -.0011 L3545%;30 -.0822%3.1200 -.0302 .0554
w niig ~ 0354 N142%; 02004 ~.1806%3.0734 .8770 .0283
P .8698 .1053 .254673.6122 -.0304%3.0727 -.0071 . 5633
q -.1583 .8920 .0287%3.0436 -.4722+3.1338 .0569 -.6276
T .3697 -.3303 .0628%3.1918 .0012+3.0038 01351 .4597
3 -.2718 -.0201 -.526723.3321 .0194%3.1038 -.0052 -.1852
9 .0418 -.2840 -.0524%3.0022 .6602F3.0637 -.0509 .1822
[ 34=.636 J.,ec=3.011 J=3.647
K. 4 L2349 .0373 -.7122 -.0958 .1354 L2151 -.03686 .1803
. 5684 -.6127 .0122 -.0243 -.8210 -.1037 -.2389 -1.0973
L6354 .1857 .1808 .1223 -.1646 .0106 4657 -. 5216
0286 -.3630 -.3587 L2135 - 2264 -.6013 -.1248 -.1785
Note 3\ represents the eigenvalue congr:but:on to performance index J and ?vec represents

the eigenvector contribution to J
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One point of interest is worth discussion prior to
proceeding with variations on the weightings. The R matrix
returned by the algorithm for this example is relatively
close to diagonal and the diagonal elements are of the same
relative magnitude. The R matrix returned is

1.2636 .1027 .1968 -.0817
.1027 1.5340 -.2174 -.1977

.1968 -.2174 2.1366 .1330
-.0817 -.1977 .1330 1.17G4

The significance of this R matrix is that because it comes
close to approximating a diagonal matrix, the minimum
singular value of the return difference matrix is : :rly
one. Figure 5 shows a plot of the minimum singular values
of the return difference matrix for this case. The minimum
singular value of .992 for this system yields good
independent stability margins of IGM=(.502,125.0) and
IPM=(-59.5,59.5). The use of R>0 allows the maximum
flexibility in placing the closed loop eigenstructure within
the LQR limitations. It turns out that R being near
diagonal is a general result for all of the cases run with
this example for R>0. Therefore, the flexibility of R>0 can
be utilized and the resulting closed loop systems will still
possess good independent stability margins.

The results in Table 13 provide insight as to what
variations on the weightings should be attempted. The
location of the closed loop poles will determine the speed
and type of the vehicle's response and have a significant
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Figure 5 Helicopter Example Minimum Singular Values for
Unity Weighting Case with R>0

impact on handling qualities, making it important to move
them closer to desired. Increasing the weighting for the
desired poles will move the achievable poles closer to
desired. It appears that the desired amount of decoupling
may be possible for the heave, side velocity, and forward
velocity eigenvectors. The roll, pitch, and yaw
eigenvectors show significant coupling in all three axes
which is not surprising since the three poles are almost
identical. Recall that because the complete eigenstructure
is not achievable, a tradeoff between the various elements
is probably required. Weighting the roll, pitch, and yaw
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eigenvectors more heavily may result in better decoupling in
those vectors, but it also may move the poles further from
desired cr cause increased coupling in the other
eigenvectors. On the other hand, decreasing the weighting
on the roll, pitch and yaw eigenvectors will likely allow
the other elements of the eigenstructure to move closer to
desired while possibly still providing some decoupling in
these eigenvectors. These considerations lead to using the

following weightings for the next case:

s 0 11111 .5
6 .5111173 .5
.5.511111.5
.5.500111.5
FPe=(4 4444444] Fv=
.5 .511001 .5
.5 .511111.5
.5 .500111.5
.5 .511001 .5

Table 14 presents the results for this first variation
on the weightings. As expected, the poles are closer to
desired, yielding a much smaller contribution to J
(J,=4(.056)]. The achievable heave, side velocity, and
forward velocity eigenvectors are also slightly improved
over the unity weighting case (Table 13). The lower
weighting on the roll, pitch, and yaw eigenvectors resulted
in values further from desired than the unity weighting
case. The eigenvector associated with the roll mode shows a

large roll yaw rate component. The pitch mode eigenvector
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has large components associated with roll rate and yaw rate

and also has some undesired roll angle content. The yaw

mode eigenvector has a large pitch rate component and a

moderate roll rate component.

Poles

- 4, Eigenvectors -

TABLE 14
Helicopter Example Results with R>0
First Weighting Variation

Weights:

.5 (roll, pitch, yaw), 1 others

Side Forward
Roll Pitch Velocity Velocity Heave Yaw
Aa ~-3.5254 -2.9439 -.7806%3,4746 -.7284%j 3339 -1.0085 -2.85590
Achievable Eigenvectors
u -.0077 -.0845 .0092+3.0157 L4552%30 ~.0990 .0515
v L0600 .0517 .4505%30 -.0348%3.0454 -.0257 .0002
w -.0271 .0127 .0366+3.0085 -.0009+3.0187 .9927 -.0695
P .8489 .4558 .3020%5.5100 .0017%j3.0070 -.0002 . 1659
q .0568 .6796 .0113%3.0396 -, 411123 .3742 -.0304 -.3503
r L4548 -.500€ -.1504%j.0452 .0238%3.0584 -. 0465 .9069
b -.2540 -.1361 -.560623.3182 -.01491).0137 .0048 -.0915
9 -.0225 -.2221 -.0274+3.0368 .8575%3.2078 .0324 L1087
J\=4(.056)=,223 l Jyec=1-314+.5(.922)=1.775 J=1.998
Knd ~.1002 .1098 -.4B898 -.0251 .0881 .1128 -.0024 .1568
.6988 -.3288 .0293 -.0454 -.6938 -.0659 -.1979 ~1.0365
L4479 L1377 L1349 .0943 -.1489 .1166 .3970 -.3809
-.50861 ~. 4662 -.3692 .1929 -.0500 -.6003 -.0776 .3729
Note: J) represents the eigenvalue contribution to performance index J and 3vec represents

the eigenvector contribution to J.

The achievable poles in Table 14 show a minor problem

encountered in using the algorithm. Recall that the desired

poles for the pitch and yaw modes were -2.9 and -3.0

respectively.

magnitude of the two,

The desired pitch mode pole has the smaller

but the results in Table 14 show that

the algorithm matched the lower magnitude achievable pole
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(-2.855) with the yaw mode. The reason for this discrepancy
is that the algorithm matches desired and achievable poles
by starting with the lowest magnitude desired pole and
finding the minimum error between that desired pole and all
of the achievable poles. The matched poles are eliminated
from consideration, and the algorithm then matches the
desired pole with the next larger magnitude by comparing the
error between it and all of the remaining achievable poles.
In this case, the two achievable poles for pitch and yaw lie
very <lose together. The algorithm matched the desired
pitch mode pole first because it has the smaller magnitude
and the achievable pole closest to it was the one with the
larger magnitude. Thus, the desired pitch mode pole was
matc-ed with the larger value, leaving the smaller magnitude
achiz:vable pole to be matched with the yaw mode desired
pole.

The results for one final weighting variation with this
examnle are shown in Table 15 to demonstrate the necessity
of trading off between the requirements for the various
elemonts of the desired eigenstructure. For this case the
eigervalues were again assigned weights of four while the
roll mode eigenveztor <lements were given weights of 0.5.
Elements of all other eigenvectors were assigned weightings
of unity.

Comparison of the Table 15 results to the results for

the first weighting variation in Table 14 reveals that the
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TABLE 15
Helicopter Example Results with R>0
Second Weighting Variation

Weights - Poles: 4, Eigenvectors: .5 (roll), 1 others
Side Forward
Roll Pitch Velocity Velocity Heave Yaw
Aa -3.5638 -2.8680 -.7197+3.3490 -.8583£3.3178 -.9867 -2.9833
Achievable Eigenvectors
u -.0104 ~.1276 -.0029x3.0258 . 4480230 -.0938 .0051
v .0516 -.0081 .4624230 -.0434F).0418 -.0127 -.0308
w -.0437 -.1109 .0535¢3.0077 -.0097xj3.0227 .8937 -.1565
P .8032 . 1094 .4532%3.3726 -.01112j.0059 .0167 -.0109
q .0844 . 9240 .0221%3.0564 -.3944123.3862 -.0382 .0084
r .5331 -.0222 .0408%3.0794 .1163%3.1253 -.0045 . 9864
¢ -.2407 -.0373 -.6123x3.2163 -.0082x).0085 -.0167 -.0303
9 -.0311 -.3222 -.0475+3.0526 .B6438%3.2153 .0389 -.0192
3x=4(.0387)=.151 3vec=1.0307+.5(.9828)=l.522 J=1.673
K4 -.1522 .1385 -. 4831 -.0557 .15982 .19086 .0350 .2004
.7082 -.3502 .0307 -.0575 -.7115 ~.0775 -.2454 -1.0428
L3232 .0886 .1158 .0836 -.0688 L1567 L4161 -.2877
-.3853 -.3815 -.3324 .1769 -.1402 -.6619 -.1723 .3178
Note: jx represents the eigenvalue contribution to performance index J and jvec represents

the eigenvector contribution to J.

second variation improved the overall eigenstructure
assignment. The achievable poles in Table 14 are slightly
closer to desired than those resulting from the first
variation. The eigenvectors associated with heave and side
velocity were also slightly closer to desired for the second
variation. The penalty paid for improving the majority of
the eigenstructure was a degradation in the roll mode
forward velocity mode eigenvectors. The complex conjugate
forward velocity eigenvectors moved slightly further away
from desired than in case of the first weighting variation.
The degradation in the roll mode eigenvector was expected,
because it was weighted more lightly than the other
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eigenvectors. The magnitude of the yaw rate component of
this eigenvector increased over the case of the first
weighting variation.

Figure 6 shows a plot of the minimum singular values
for the unity weighting case (Table 13) as well as the two
weighting variation cases (Tables 14 and 15). The singular
values in Figure 4 indicate that the closed loop system of
the unity weighting case possesses the best stability
robustness. However, minimum singular values for the two
other cases are also close to one so these closed loop
systems also possess good independent stability margins.
Table 16 shows the independent stability margins for each of
the three cases.

TABLE 16

Independent Stability Margins for Three Weighting Cases
Helicopter Example

First Second
Unity Weighting Weighting
Weighting Variation Variation
a=min o[{I+G] .992 .971 .982
IGM (.502,125.0) (.507,34.8) (.505,54.1)
IPM (°) (-59.5,59.5) (-58.1,58.1) (-58.8,58.8)

Comparison to Garrard and Liebst Results - All three of

the design cases presented using the robust eigenstructure
assignment algorithm yield independent stability margins
superior to those of the Garrard and Liebst results in
Table 12. However, the algorithm was not able to yield the
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Figure 6 Helicopter Example Minimum Singular Values for
Three Weighting Cases

same eigenvector decoupling achieved by Garrard and Liebst.
Figure 7 shows a minimum singular value plot for the return
difference matrices of the Garrard and Liebst full state
design and the design resulting from the second weighting
variation (Table 15). The curves in Figure 6 show that the
robust eigenstructure assignment algorithm design possesses
much better independent stability margins than the Garrard
and Liebst design. Recall that for the Garrard and Liebst
design IGM=(.599,3.03) and IPM=(-39.1,39.1) while the
margins for the algorithm design (from Table 16) are
IGM=(.505,54.1) and IPM=(-58.8,58.8).
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Figure 7 Comparison of Minimum Singular Values of Return
Difference Matrix for Garrard and Liebst Design
and for Robust Figenstructure Assignment Algorithm
Design.

The algorithm was not able to reproduce the eigenvector
decoupling achieved by Garrard and Liebst due to the
restrictions of the LQR Because the desired eigenstructure
was not entirely with: .e achievable region, the designs
resulting from the use or the algorithm required tradeoffs
between the various elements of the eigenstructure. The
algorithm was able to nearly achieve the desired closed loop
poles and much of the desired decoupling in the
eigenvectors. However, the eigenvector associated with the
roll mode showed a significant yaw rate component that was
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not present in the Garrard and Liebst results. The use of
further variations in the weights could result in a roll
mode eigenvector closer to desired, but this would be
accomplished at the expense of other elements of the
eigenstructure. The poles and/or the other eigenvectors

would be pulled further from desired.
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VI. Conclusions and Recommendations

The algorithm developed in this thesis provides a
useful tool to robustly assign the closed loop
eigenstructure for full state feedback systems within the
constraints of the LQR. The algorithm achieves this
eigenstructure assignment by minimizing a quadratic cost
function involving the difference between the desired and
achievable eigenstructures. One feature of the algorithm is
the ability to assign relative weightings to each element of
the desired eigenstructure to specify the importance of
achieving particular elements. Another feature of the
algorithm is that the LQR control weighting matrix, R, can
be selected as pI, diagonal, or symmetric positive definite.
Specifying R=pI will guarantee good independent gain and
phase margins, while specifying R>0 provides the maximum
flexibility in achieving the desired eigenstructure. These
features provide the user with a great deal of flexibility
in achieving a closed loop eigenstructure close to desired.
Two control system examples were used to demonstrate the use
of the algorithm.

A six state, 2 input F-4 inner loop example served to
verify the pole placement portion of the algorithm through
comparison to results obtained by Robinson. The FORTRAN
code developed for this thesis reduced the required

computational time over the MATLAB routine developed by
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Robinson by a factor of approximately ten. This exampie
also demonstrated the complete eigenstructure assignment
capability of the algorithm to be superior to a method
presented by Harvey and Stein. The algorithm developed in
this thesis placed the closed loop eigenstructure much
closer to desired than the Harvey and Stein method and
resulted in significantly better independent stability
margins.

An eight state, four input helicopter control system
example was also used to demonstrate the algorithm. Garrard
and Liebst used this example to demonstrate their
eigenstructure assignment technique. The Garrard and Liebst
technique, which provides no stability robustness
guarantees, placed the poles at the exact desired locations,
and then assigned the eigenvectors. The desired
eigenstructure for this example was not achievable within
the LCR restrictions, thus producing the requirement to
trade off between the various desired eigenstructure
elements. The algorithm was used to design a system that
provided an eigenstructure close to desired but with
improved stability robustness over the Garrard and Liebst
design. The resulting system did have better stability
robustness and placed the majority of the eigenstructure
close to desired. However, the required tradeoff resulted
in an undesired and significant yaw rate component in the

eigenvector associated with the roll mode.
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The development of this algorithm provides several
opportunities for further research. While the FORTRAN code
developed for this thesis made significant speed
improvements over the MATLAB based routine, further
improvements are possible. The source code in Appendix B
can be made more efficient to provide speedier operation, or
an even faster minimization routine can be used with the
algorithm. A second area to be investigated is the
inclusion of the control/state cross coupling matrix in the

LQR performance index. The LQR performance index can be

[l

where N is a weighting matrix defining the cross coupling

rewritten as follows

X
u

dt

between the states and controls. This matrix can be
included in the algorithm, thus providing even greater
flexibility in achieving closed loop eigenstructures. One
final area for further research is the addition of a state
estimator. Realistically, full state feedback is seldom (if
ever) available in actual systems, so a state estimator
could be implemented with the loop transfer recovery
technique to regain the LQR stability margins. The validity
of this method for aircraft control system design should

then eventually be evaluated through flight test.
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Appendix A
Subroutine Descriptions

This appendix provides detailed information on each
FORTRAN subroutine written by the author. Included for each
routine are a short description, required inputs, available

outputs, and calls made to other routines.

SUBROUTINE SORT

This subroutine sorts eigenvialues in ascending order
then puts columns of the modal matrix in the same order.
The eigenvalue weighting vector and the columns of the
eigenvector weighting matrix are also rzourdered. The
~calling statement is

call SORT(N,edg,ed,maged,Fes,Fe,WDESS,WDES, Fvs, Fv)

Inputs

N - dimension of system A matrix
edg - N dimensional vector of unsorted desired

eigenvalues

Fes - N dimensional vector of unsorted eigenvalue
weightings

WDESS - N x N dimensional matrix of unsorted
eigenvectors

Fvs - N x N dimensional matrix of unsorted eigenvector
weightings

Qutputs

ed -~ N dimensional sorted eigenvalue vector

maged - N dimensional eigenvalue magnitude vector

Fe - N dimensional sorted eigenvalue weighting vector

WDES - N x N dimensional sorted modal matrix

Fv - N x N dimensional sorted eigenvector weighting
matrix

Calls

DSVRGP (IMSL sorting routine [19])
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SUBROUTINE EAFUNC

This subroutine calculates the value of the performance
index J and the closed loop eigenstructure for given Q and R
matrices. Form of call statement is

call EAFUNC(nx,X,RJ)
Inputs

nx = size of X vector

X = vector of the upper triangular portions of H and M
Outputs

RJ = value of performance index J
Inputs Passed to EAFUNC Through Common Block

Open loop A and B matrices

n = dimension of A

m = dimension of B

ed = nx1 desired eigenvalue vector (complex)

Fe = nx1 weighting vector for eigenvalues

WCES = nxn modal matrix

Fv = nxn matrix whouse columns weight corresponding
columns of WDES

iwrite = code automatically set in main program
designating when to write to output file
nrcode = code specifying what type of R matrix to use

1 - R=01I
2 - R=(diagonal]
other - R>»0

Outputs Passed to Main Program Through Common Block

ea = nxl vector of achievable eigenvalues in ascending
order

G = mxn LQR optimal gain matrix

ACL = nxn closed loop A matrix

WACH = nxn achievable mcdal matrix

"alpna = nx1 vector of eigenvector difference
minimization
parameter

Calls

MAKEQR, REG, EIGVV, WNORM, SORT, IMINS
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SUBROUTINE FMINS

This subroutine finds the H and M matrices that
minimize the performance index calculated in subroutine
EAFUNC. The Nelder-Mead simplex algorithm is used to
perform the minimization. The calling statement is

call FMINS (NX, XGUESS, X,tol,NXP1,v,Fvec,vs,vss, ievalmax)
Inputs

NX - dimension of the X vector
XGUESS ~ NX dimensional initial guess vector containing

the upper triangular portions of the H and M
matrices

tol - user defined convergence tolerance (default=.001)
NXP1 - NX + 1

ievalmax - maximum number of simplex iterations
Outputs

X - NX dimensional vector with upper triangular

portions of H and M yielding the lowest values of
J

v - NX x NXP1l matrix whose columns contain a simplex of
guess vectors _
Fvec - NXP1l dimensional vector of J values for each
column of simplex v
vs - NX dimensional scratch vector
vss - NX x NXP1l dimensional scratch matrix

Calls

EAFUNC, DSVRGP (IMSL sorting routine [19]), FMINSTEP

74




SUBROUTINE FMINSTEP

This subroutine calculate each subsequent simplex
iteration in the minimization effort. It is part of the
Nelder-Mead simplex algorithm. The calling statement is

call FMINSTEP(v,NX,NXP1,Fvec,vr,vk,ve,vt,vs,vss,vc,vbar)

Inputs

v - NX x NXP1 simplex whose columns are guess vectors
NX - dimension of X vector

- NX + 1 ~
Fvec - NXP1l dimensional vector of J values for each

NXP1

Outputs

column of

simplex Vv

v - NX x NXP1l simplex whose columns are guess vectors
Fvec - NXP1l dimensional vector of J values for each

column

vr -
vk -
ve -
vt -
vs -

of
NX
NX
NX
NX
NX

simplex v

dimensional
dimensional
dimensional
dimensional
dimensional

vector containing reflected point
scratch vector
vector containing expanded point
scratch vector
scratch vector

vss - NX x NXPl dimensional scratch matrix
vc - NX dimensional vector containing contracted point
vbar - NX dimensional vector containing average vector

Calls

EAFUNC, DSVRGP (IMSL sorting routine [19])
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SUBROUTINE MAKEQR

This subroutine builds the Q and R matrices from the
upper triangular portions of the symmetric matrices H and M.
The calling statement is

call MAKEQR(N,M,NX,X,Q,R,RM,QH,nrcode)

Inputs

N - dimension of Q and H matrices

M - dimension of R and M matrices

NX - dimension of X vector

X - NX dimensional vector of the upper triangular
portions of matrices H and M

nrcode - interger designating what type of R matrix to

use
1 - R=pIl
2 - R=[diagonal]
3 - R>0
Qutputs
Q - N x N positive semi-definite LQR state weighting
matrix
R - M x M positive definite LQR control weighting
matrix

RM - M x M symmetric M matrix where R=M'M
QH - N x N symmetric H matrix where Q=H'H

Calls

MMUL (LQGLIB routine)
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SUBROUTINE WNORM

This subroutine normalizes the eigenvectors to one.
The calling statement is

call WNORM(WVEC,N)

Inputs

WVEC - N dimensional eigenvector
N - dimension of eigenvector

Output

WVEC - N dimensional normalized eigenvector
Calls

none
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Appendix B

Subroutine Source Codes

This appendix contains the source code listings for all
of the FORTRAN subroutines written by the author. Also
included is a listing of the m-file that provides their

interface between MATLAB and the FORTRAN routines.
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Q000

Q

aaaoaaaqa

PROGRAM EIGSPACE

IMPLICIT COMPLEX*16 C

IMPLICIT REAL*8 (A-B,D-H,0-2)

COMMON /INOU/KIN, KOUT

COMMON A,B,ed,ea,G,NR,NA,ND,M,N,NN,ACL,Fv,Fe,
+ WDES,WACH,calpha, iwrite,nrcode

DIMENSION X(65),A(10,10),B(10,10),R(10,10),Q(10,10),
1 RK(10,10),G(10,10),ACL(10,10),Fv(10,10),Fe(10)
DIMENSION XGUESS(65) ,XS5(65),GRAD(65),

1 X2(65)

DIMENSION v(65,66) ,Fvec(66),vs(65),vss(65,66),
+ Fvecl(66)

DIMENSION FeS(10),FvS(10,10)

DIMENSION edr(10),edi(10),wdessr(10,10),wdessi(10,10)
REAL*8 maged(10)

COMPLEX*16 ea(10),edg(10) ,WDES(10,10) ,WACH(10,10)
COMPLEX*16 ed(10),WDESS(10,10),calpha(10)
INTEGER IPERMM(66),IPERMD(10)

EXTERNAL PPFUNC, DMACH, DUMCGF
open(UNIT=10,FILE='brad.dat',6K STATUS='old"')
open(UNIT=9, FILE="'PPOUT.DAT',STATUS="'0ld"')
rewind 10

rewind 9

KIN=5

KOUT=6

- set integers specifying array sizes
and assign values to scaling vector for X

iwrite=0

read(10,*) N

NA=N

NN=2*N

NA2=N*N

ND=NN#* (4*N+3)

- read values for A matrix - file should have a
list of values starting with the dimension of
the A matrix, followed by the values of A listed
by column (i.e. column 1 followed by column 2
-- next is the column dimension of the B matrix

followed by the values for B listed by column
ji=1
icount=0
do 10 i=1,NA2
icount=icount+1
if(icount.eq.11l) then
j3=33+1
lcount=1
endif
read(10,*) A(icount,ijj)
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Q

0

0oaoaQ

aa0a0a

Q

10 continue

read(10,*) M
NR=M
NB=N*M
ji=1
icount=0
do 20 i=1,NB
icount=icount+1
if(icount.eq.11l) then
icount=1
33=33+1
endif
read (10, *) B(icount,jj)
20 continue

- — . —— — — — — T T . R P R D G e —— - — - - T  ——— . — - —— — —— —————

do 30 i=1,N
read(10,*) FeS(i),edr(i),edi (i)
edg (i)=DCMPLX(edr(i),edi(i))
30 continue
- read the desired eigenvectors and the
associated weighting
ji=1
icount=0
do 35 i=1,NA2
icount=icount+1
if(icount.eq.1ll) then
icount=1
33=33+1
endif
read (10,*) FvS(icount,jj),wdessr(icount,jj),
+ wdessi(icount,jj)
WDESS (icount, jj)=DCMPLX (wdessr(icount,jj),
+ wdessi(icount,jj))
35 continue
- read convergence tolerence, maximum number of
evaluations and code specifying type of R
read(10,*) tol
read(10,*) ievalmax
read (10, *) nrcode
if(tol.1t.0.0d0) tol=.001d0
- sort desired eigenvalues and eigenvectors in order
of ascending eigenvalue modulas and normalize
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naoaa0oaaan

eigenvectors to one
call SORT(N,edg,ed,maged, IPERMD, FeS,6 Fe,WDESS,
1 WDES,FvS,Fv)
call WNORM(WDES,N)
- set initial guess for R and Q. The values in
XGUESS are the upper triangular portions of matrices
M and H. Q and R are calculated in subroutne
MAKEQR.
ix=0
if (nrcode.eq.1) then
XGUESS(1)=1.040
ix=1
goto 51
endif
if(nrcode.eq.2) then
do 41 i=1,M
ix=ix+1
XGUESS (ix)=1.0d0
41 continue
else
icount=0
do 50 i=1,M
icount=icount+1
do 40 jj=icount,M
ix=1ix+1
XS (ix)=1.0d0
X(ix)=0.0d0
if (icount.eq.jj)then
XGUESS {ix)=1.0d0
else
XGUESS (ix)=0.0d0
endif
write (9,*) XGUESS(ix)
40 continue
50 continue
endif
51 continue

icount=0
do 70 i=1,N
icount=icount+1
do 60 jj=icount,N
ix=ix+1
XS (ix)=1.0d0
X(ix)=0.0do
if(icount.eq.3j)then
XGUESS (ix)=1.0d0
else
XGUESS (ix)=0.0d0
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(9]

(9]

ao0aq

endif
60 continue
70 continue
do 80 i=1,ix
XS (ix)=1.0do0
80 continue
ixpl=ix+1

- —— - — - — - ——— — . —— . — - ——— A - ——— ————— ———— - ——————

do 91 i=1,ix
X(i)=0.0do0
vs(i)=0.0d0
91 continue
do 93 i=1,ixpl
Fvecl(i)=0.0d0
do 92 jj=1,ix
vss(jj,i)=0.0do0
92 continue
93 continue

S - ———— - —— D ——  —— . — ————— ———  ——— ——— Y —— ———————— — ——— - —————

CALL FMINS(ix,XGUESS,X,tol,ixpl,v,Fvecl,vs,vss,
+ IPERMM, ievalmax)

— — — D - —— - - = - - — — A ——— - — - T —— W . ——— — T — —— ——

- . —— - — - —— — —— . ——— ———— T ——— —— - —— - ————————— ——————

kcount=0
do 100 i=1,ix
XGUESS (1) =X (i)
100 continue

110 continue
kcount=kcount+1
do 120 i=1,ix

X2 (i)=0.0do

120 continue

do 121 i=1,ix
X2 (i)=0.0d0o
vs(i)=0.0d0

121 continue
do 123 i=1,ixpl

Fvec(i)=0.0d0
do 122 jj=1,ix
vss(jj,i)=0.0do0

122 continue

123 continue

- . — - ——— - — ——— —————— —— T — - — A ———— ——— - —— - ——

call FMINS(ix, XGUESS,X2,tol,ixpl,v,Fvec,vs,
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0

+ vss,IPERMM, ievalmax)

do 130 i=1,ix
XGUESS (1) =X2 (1)
continue

- - —— = - ——— —— — i — . Y - —— — S = ————

delJ=dabs (Fvecl (1) -Fvec(1l))
if (Fvecl(l).lt.Fvec(l)) goto 141
if (Fvecl(l).gt.Fvec(l)) then
Fvecl(l)=Fvec(1l)
do 140 i=1,ix
X(i)=X2(1)
continue
endif
if (delJ.gt.tol.and.kcount.lt.50) goto 110
continue

iwrite=1
CALL EAFUNC(ix,X,RJ)
end
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QaQo0aa

36

38
37

SUBROUTINE SORT (N, edg,ed,maged, IPERMD, FeS, Fe,WDESS,
1 WDES, FvS, Fv)

IMPLICIT COMPLEX*16 C

IMPLICIT REAL*8 (A-B,D-H,0-2)

DIMENSION FeS(N),Fe(N),FvS(N,N),Fv(N,N)

REAL*8 maged (N)

INTEGER IPERMD(N)

COMPLEX*16 edg(N),ed(N),WDESS(N,N),wDES(N,N)

- sort the desired eigenvalues in ascending order then
put the weighting matrices Fe and Fv and eigenvector
matrix WDES in the same order

do 36 i=1,N
maged (i)=dsqrt((dreal (edg(i))) **2+(dimag(edg(i))) **2)
IPERMD (i) =1
continue
call DSVRGP(N,maged,maged, IPERMD)
do 37 i=1,N
ed(i)=edg (IPERMD(1))
Fe(1)=FeS(IPERMD(i))
do 38 jj=1,N

WDES (jj,i)=WDESS(jj, IPERMD(1i))

Fv(3j,1)=FvS(jJj,IPERMD(1i))

continue
continue
return
end
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Qa0

aaaan

1010

1020

1030

1040

SUBROUTINE FMINS (NX, XGUESS, X, TOL,NXP1,v, Fvec, Vs,

+ vss,IPERMM, ievalmax)

IMPLICIT COMPLEX#*16 C
IMPLICIT REAL*8 (A-B,D-H,0-2)
DIMENSION XGUESS (NX),X(NX),V(NX,NXP1),Fvec(NXP1),

+ vs (NX) ,vss (NX,NXP1l),vr(695),vk(65),ve(65),
+ vt (65),vc(65) ,vbar(65)

INTEGER IPERMM (NXP1)

icallf=0
icount=0

- Build initial simplex near XGUESS
v(i,j)=simplex matrix
vs{i)=scratch vector
Fvec(i)=function values corresponding to v(i,j)
columns

xnx=dflotj (NX)

aa=0.5do

p=aa* (dsgrt (xnx+1.0d0)+xnx-1.0d40)/ (xnx*dsqrt (2.0d40))
g=aa* (dsqrt (xnx+1.0d0)~-1.0d0) / (xnx*dsqrt{2.0d0))

do 1010 i=1,NX

v(i,1)=XGUESS (i)

vs(i)=v(i,1)

X (1i)=XGUESS (i)
continue
icallf=icallf+1
call eafunc(NX,vs, Fv)
Fvec(1l)=Fv
i=1
do 1040 jj=1,NX

do 1020 kk=1,NX

vs (kk)=X(kk)
continue

i=jj+1

do 1030 kk=1,NX

if(jj.eq.kk) then
v(kk, i)=vs (Kkk)+p
else
v(kk,1i)=vs(kk)+q
endif
vs(kk)=v(kk, 1)
continue
icallf=icallf+1

call EAFUNC(NX,vs, Fv)

Fvec(i)=Fv
continue

- —— D " - —— - —— - —— - - ————— ———— A ——————— —————————— -

- sort the simplex in order of increasing Fvec(i)
IPERMM(i)=vector of index of sorted simplex
sort is in ascending order
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00

vsum(i)=summation of abs(v(:,1i)
do 1050 i=1,NXP1
IPERMM (i)=1
1050 continue

call DSVRGP(NXP1, Fvec, Fvec, IPERMM)
do 1070 i=1,NXP1
do 1060 jj=1,NX
vss(jj,1i)=v(jj, i)
1060 continue
1070 continue
do 1090 i=1,NXP1
do 1080 jj=1,NX
v(jj,i)=vss(jj,ipermm(i))
1080 continue
1090 continue
iterate until the specified tolerance, tol, is
met
1100 continue
if(icount.gt.ievalmax) goto 1130
test=0.0do0
vsum=0.0d0
do 1120 i=2,NXP1
do 1110 jj=1,NX
vsum=dabs (v(jj,i)-v(jj,1))+vsum
1110 continue
test=dmaxl (test,vsum)
1120 continue
if(test.le.tol) go to 1130

do 1121 i=1,NX
vr(i)=0.0d0
vk(i)=0.0do
ve(i)=0.0d0
vt (i)=0.0d0
vs(i)=0.0d0
vc(i)=0.0d0o
vbar(i)=0.0d0
do 1122 jj=1,NXP1
vss(i,jj)=0.0d0
1122 continue
1121 continue

call FMINSTEP(v,NX,NXP1l,Fvec,vr,vk,ve,vt,vs,vss,
+ vc,vbar, IPERMM)
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1130

1140

icount=icount+1

goto 1100

continue

do 1140 i=1,NX
X(i)=v(i,1)

continue

return

end
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Q0

SUBROUTINE FMINSTEP(v,NX,NXP1, Fvec,vr,vk,ve,
+ vt,vs,vss,vc,vbar, IPERMM)

IMPLICIT COMPLEX*16 C

IMPLICIT REAL*8 (A-B,D-H,0-2)

DIMENSION Vv (NX,NXPl),6Fvec(NXP1l),vr(NX),Vvk(NX),
+ ve(NX) ,vt(NX),vs(NX),vss (NX,NXP1l),vc(NX),
+ vbar (NX)

INTEGER IPERMM (NXP1)

icall=0

alpha=1.0d0

beta=0.5d0

gamma=2.0d0

xnx=dflotj (NX)

- W R D D i T S WM I S S G S W S R Gt T G G L G D S G S A G T M S S G S G —— —— ——

do 2020 i=1,NX
vb=0.0do0
do 2010 jj=1,NX
vb=vb+v (i, jj)
2010 continue
vbar (i)=vb/xnx
2020 continue

do 2030 i=1,NX
vr(i)=vbar(i)+alpha*(vbar(i)-v(i,NXP1))
2030 continue
icall=icall+1
call EAFUNC(NX,vr, fr)
do 2040 i=1,NX
vk(i)=vr(i)
2040 continue
fk=fr
if(fr.1t.Fvec(l)) then

s D D S —— - —— T = ——— — - — " D G ——— N > ————  Wh G — . —— ——— e — ———

do 2050 i=1,NX
ve(i)=vbar(i)+gamma* (vr(i)-vbar(i))
2050 continue
icall=icall + 1
call EAFUNC(NX,ve, fe)
if(fe.lt.Fvec(l)) then
do 2060 i=1,NX
vk(i)=ve (i)
2060 continue
fk=fe
endif
else




2070

2080

2090

2100

Qa0

2110

2120

2120

2135

2140

- Calculate contracted point
if(fr.ge.Fvec(NXP1l)) then
do 2070 i=1,NX
vt (i)=v(i,NXP1)
continue
ft=Fvec (NXP1)
else
do 2080 i=1,NX
vt(i)=vr(i)
continue
ft=fr
endif
do 2090 i=1,NX
vc(i)=vbar(i)-beta* (vbar(i)-vt(i))
continue
icall=icall+1
call EAFUNC(NX,vc, fc)
if(fc.1lt.Fvec(NX)) then
if(fc.ge.fr) goto 2135
do 2100 i=1,NX
vk(i)=vec (i)
continue
fk=fc
else

do 2120 i=2,NX
do 2110 jj=1,NX
v(3j,i)=(v(3i,1)+v(3i,i))/2.0d0
vs(J3j)=v(3j,i)
continue
icall=icall+l
call EAFUNC(NX,vs,Fv)
Fvec(i)=Fv
continue
do 2130 i=1,NX
vk(i)=(v(i,1)+v(i,NXP1))/2.0d0
continue
icall=icall+l
call EAFUNC(NX,vVk, fk)
endif
endif
do 2140 i=1,NX
v(i,NXP1l)=vk(i)
continue
Fvec (NXP1l)=fk
do 2150 iii=1,NXP1
IPERMM(iii)=1iii
continue




- Resort the simplex
call DSVRGP(NXP1,Fvec, Fvec, IPERMM)
do 2170 i=1,NXP1
do 2160 jj=1,NX
vss(jj,i)=v(ij, i)
2160 continue
2170 continue
do 2190 i=1,NXP1
do 2180 jj=1,NX
v(jj,i)=vss(jj,IPERMM(i))
2180 continue
2190 continue
return
end
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C

SUBROUTINE EAFUNC (NX,X,RJ)
IMPLICIT COMPLEX*16 C
IMPLICIT REAL*8 (A-B,D-H,0-2)
COMMON /INOU/KIN, KOUT
COMMON A,B,ed,ea,G,NR,NA,ND,M,N,NN,ACL, Fv, Fe,
+ WDES,WACH,calpha, iwrite,nrcode
DIMENSION X(65),A(10,10),B(10,10),R(10,10),Q(10,10),
1 RK(10,10),G(10,10),ACL(10,10),Fv(10,10),Fe(10),Fes(10)
DIMENSION DUM(860,1),IDUM(20),WR(10),WI(10),2(10,10),
1 IV1(10),FV1(10),ACLS(10,10)
COMPLEX*16 ea(10) ,WDES(10,10) ,WACH(10,10),
1 WDESS(10,10),WACHS(10,10),calpha(10)
COMPLEX*16 ed(10),cedif(10),edtmp(10),eatmp(10)
REAL*8 magea(10)
-this subroutine calls the cost function subroutine,
allowing variable arrays to be set

RJ=0.0dO0
do 176 i=1,10
ea(i)=DCMPLX(0.0d0,0.0d0)
do 177 jj=1,10
ACL(i,33)=0.0do
WACH(i,jj)=dcmplx(0.0d0,0.0d40)
G(i,jj)=0.0d0
continue

176 continue

call EA(NX,X,RJ,NR,NA,ND,N,M,NN,A,B,R,Q,RK,G,ACL, Fv,

1 Fe,Fes,DUM,IDUM,WR,WI,Z,IV1,FVl,ea,ed,WDES,WACH, cedif,
2 edtmp,eatmp,magea,ACLS,WDESS,WACHS,calpha, iwrite,

3 nrcode)

D - - — - G G D - ——— — D —— —— —— - ————— Y —————— - - ——— — . — -
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SUBROUTINE EA(NX,X,RJ,NR,NA,ND,N,M,NN,A,B,R,Q,RK,G,ACL, Fv,
1 Fe,Fes,DUM,IDUM,WR,WI,Z,IV1l,FVl,ea,ed,WDES,WACH, cedif,
2 edtmp,eatmp,magea,ACLS,WDESS,WACHS,calpha, iwrite,nrcode)
IMPLICIT COMPLEX*16 C

IMPLICIT REAL*8 (A-B,D-H,0-2)

COMMON /INOU/KIN, KOUT

DIMENSION X(NX),A(N,N),B(N,M),R(M,M),Q(N,N),

1 RK(N,N),G(M,N) ,ACL(N,N) ,FVv(N,N) ,Fe(N) ,WNORMA (10),
2 FvsS(10,10) ,FeS(N)

DIMENSION DUM(ND, 1), IDUM(NN),WR(N),WI(N),Z(N,N),IV1I(N),
1 FV1(N)

DIMENSION RM(10,10),QH(10,10)

DIMENSION edifmag(10) ,ACLS(N,N)

DIMENSION FvDUM(10,10),FeDUM(10,10)
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COMPLEX*16 ea(N),ed(N),WDES(N,N),WACH(N,N),6WDESS(N,N),
1 WACHS(N,N),calpha(N)

COMPLEX*16 cedif (N),edtmp(N),eatmp (N)

INTEGER IPERMA (10),imin(10)

REAL*8 magea(10)

LOGICAL ELIM

if(iwrite.ne.0) then
write(9,*) N
write(9,*) M

endif

CALL MAKEQR(N,M,NX,X,Q,R,RM,QH, nrcode)
if(iwrite.ne.0) then
do 557 i=1,M
do 556 jj=1,M
write (9,*) R(jj,1)
556 continue
557 continue
do 555 i=1,N
do 554 jj=1,N
write(9,*) Q(jj,1i)

554 continue
555 continue
endif

CALL REG(NA,NR,N,M,NN,A,B,Q,R,RK,G,ACL,DUM, IDUM, IPRT)
do 528 i=1,N
do 529 jj=1,N
ACLS (i,33)=ACL(1,33)
529 continue
528 continue

- - ——— T ———— A ————— A D ———— S D —— ——— — - ———————— . v—

ipc=1

if(iwrite.ne.0) then
do 530 i=1,N
do 5555 jj=1,N
write (9,*) RK(jj,1i)
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5555 continue
530 continue
do 531 i=1,N
do 532 jj=1,M
write(9,*) G(jj,1i)

532 continue
531 continue
endif

icomplex=0
do 539 i=1,N
if(WI(i).ne.0.0d0) icomplex=icomplex+1
539 continue
NCMP=N-icomplex/2
ii=0
do 540 i=1,NCMP
ii=ii+l
if(dabs(WI(ii)).gt.0.0) then
do 535 jj=1,N
WACHS (jj,ii)=DCMPLX(Z(Jj3,1ii),2(jj,ii+1))
WACHS (jj,1i+1)=DCONJIG (WACHS (jj,ii))
535 continue
ii=ii+l
else
do 536 jj=1,N
WACHS (jj,ii)=DCMPLX(2(jj,ii),0.0d0)
536 continue
endif
540 continue

- ——n - —— =P T T e —— - S e . - —— > D . W . —————  ——

- find the poles that are closest to each other and
take their difference
-- calculate the magnitude of the poles and sort in
ascending order
do 30 i=1,N
eatmp(i)=dcmplx (WR(1i),WI(1i))
30 continue
-- sort achievable eigenvalues in ascending order
and put eigenvectors in same order
call SORT(N,eatmp,ea,magea,IPERMA, FeDUM, FeDUM,
+ WACHS ,WACH, FVDUM, FvDUM)
-- put eigenvalues, eigenvectors, and weightings
into scratch arrays for calculations
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continue
if(iwrite.ne.0) then
do 43 i=1,N
eareal=dreal (ea(i))
eaimag=dimag(ea(i))
write(9,*) eareal
write(9,*) eaimag

continue
endif
do 41 i=1,N
eatmp(i)=ea (i)
edtmp(i)=ed (i)
FeS(i)=Fe(1i)
do 42 jj=1,N
WACHS (§3j, 1)=WACH(3j, i)
WDESS (Jjj,1)=WDES (33, 1)
FvS(3jj,i)=Fv(jj,1)
if(iwrite.ne.0) then
wreal=dreal (wach(jj,1i))
wimag=dimag(wach(jj,i))
write(9,*) wreal
write(9,*) wimag
endif
continue
continue
-~ find the acheivable poles closest to desired
and calculate the difference
jjj=o
do 501 jj=1,N
do 502 kk=1,N
if(Fv(jj,kk).ne.0.0d0) jjj=jjj+1
continue
continue
NL=N
RJ=0.0d0
do 50 i=1,N
-- calculate difference between desired poles
and each remaining acheivable pole
do 51 jj=1,NL
cedif(jj)=edtmp(1l)-eatmp(jj)
continue
-- find the minimum difference for the current
desired pole
do 56 jj=1,NL
edifmag(jj)=dsqgrt(dreal (cedif(jj)) **2+
+ dimag(cedif (jj)) **2)
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continue
call imins(NL,edifmag,imin(i))
iii=IMIN(1i)

RIJVEC=0.0d40
if(jjj.eq.0) then
if(iwrite.ne.0) then
write(9,*) jjj
write(9,*) 3j7J
goto 503
endif
endif

——— - ——— - - ——— - — A —— - ——— — — ——— ———————

suml=0.0d0
sum2=0.0d0
if(dimag(eatmp(iii)).ne.0.0d0) then
do 584 jj=1,N
suml=suml+dimag (WDESS(JjJj,1)) *dreal (WACHS(33j,1iii))
+ ~dreal (WDESS(jj, 1)) *dimag (WACHS (33,1ii))
sum2=sum2+dreal (WDESS(jJj, 1)) *dreal (WACHS(jj,iii))
+ +dimag (WDESS(jj,1) ) *dimag (WACHS (jj,iii))
continue
phl=datan2 (suml, sum2)
calphal=dcmplx(dcos(phl),dsin(phl))
calpha2=-1*calphal
else
calphal=(1.0d0,0.0d0)
calpha2=-1*calphal
endif

- —— - D D E TR D D - D - —— " —— T S DS L - ——— T — o ———— - ————— —— - ———

DELWI1=0.0d0
DELWI2=0.0d0
do 585 jj=1,N
DELWI1=FvS(j3j,1)*((DREAL(WDESS(jj,1)~-
+ calphal*WACHS (§3,1iii))) **2
+ + (DIMAG (WDESS (33 ,1) -calphal*WACHS (§j,1iii))) **2)
+ +DELWI1
DELWI2=FvS(jj,1) *( (DREAL(WDESS (jj,1)-

+ calphaZ*WACHS(jj,iii)))**2
+ +(DIMAG(WDESS(jj,l)—calphaZ*WACHS(jj,iii)))**2)
+ +DELWI2

continue

if(DELWI1.1t.DELWI2) then
DELWI=DELWI1
calphai=calphal

else
DELWI=DELWI2
calphai=calpha2
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endif
RJVEC=DELWI
if (iwrite.ne.0) then
do 587 jj=1,N
if(eatmp(iii).eq.ea(jj)) calpha(jj)=calphai

587 continue

if(i.eq.N)then
do 586 jj=1,N
alreal=dreal (calpha(ij))
alimag=dimag(calpha(jj))
write(9,*) alreal
write(9,*) alimag

586 continue

endif
endif

503 continue

. — D - — ——— S T R D W Y ——— - —— R P W) - T T . —————— ——— w_

-- reset the eigenvalue/vector arrays to eliminate
those poles already matched up. Program will
reset the achievable values by
skipping the set that had the minimum eigenvalue
difference modulas.

The desired values are reset by
eliminating the first set (this is the eigenvalue
that was used to calculate cedifri).

k=0

NL=NL-1

do 52 jj=1,NL

k=k+1

ELIM=jj.eq.iii

IF(ELIM) K=k+1

eatmp(jj)=eatmp (k)

edtmp(jj)=edtmp(jj+1)

FeS(jj)=FeS(jj+1)

if(jjj.eq.0) goto 591

do 590 kk=1,N

WACHS (kk, §3) =WACHS (kk, k)
WDESS (kk, j3j)=WDESS (kk, jj+1)
FvS(kk,jj)=FvS(kk,jj+1)

590 continue
591 continue

52 continue
50 continue

if (iwrite.ne.0) write(9,*) RJ
RETURN
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END
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SUBROUTINE IMINS (NL,EDIFMAG,I)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION EDIFMAG (NL)

i=1

do 5000 jj=1,nl

if (dabs(edifmag(jj)).lt.dabs(edifmag(i))) i=3jj

5000 continue

return

end

98




SUBROUTINE WNORM(WVEC,N)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION WNORMV (10)
COMPLEX*16 WVEC(N,N)
do 5 i=1,N
WNORMV (1) =0.0d0
5 continue
do 10 i=1,N
do 20 jj=1,N
WNORMV (i) =WNORMV (i) + (dreal (WVEC(3j, 1)) ) **2+
+ (dimag (WVEC(3j, 1)) ) **2
20 continue
10 continue
do 30 i=1,N
do 40 jj=1,N
WVEC(Jj3j,1)=WVEC(3jj,i)/dsqrt (wnormv(i))
40 continue
30 continue
return
end
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SUBROUTINE MAKEQR(N,M,NX,X,Q,R,RM,QH,nrcode)
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION X(NX),Q(N,N),R(M,M)

DIMENSION RM(M,M),QH(N,N)

- this subroutine takes the upper triangular portion
of matrices H and M (input through vector X)
and returns the symmetric positive definite
Q and R matrices

-nrcode=1 then R=rho*I, nrcode=2 then R=diagonal
-any other nrcode yields R free to be full
ix=0
if(nrcode.eq.l.or.nrcode.eq.2) then
ix=1
do 116 i=1,M
do 117 jj=1,M
if(i.eq.jj) then
RM(1,3])=X(ix)
else
RM(i,jj)=0.0d0
endif
continue
if(nrcode.eq.2) ix=ix+1
continue
else
icount=0
do 101 i=1,M
icount=icount+1
do 102 jj=icount,M
ix=ix+1
RM(1,33)=X(ix)
RM(jj,1)=X(ix)
continue
continue
endif
icount=0
do 111 i=1,N
icount=icount+1
do 112 jj=icount,N
ix=ix+1
QH(i,Jj)=X(ix)
QH(33j,1)=X(ix)
continue
continue

- calculate the matrix products QHt*QH and RMt*RM
which is the same as HQ*QH and RM*RM because both
are symmetric

call MMUL(M,M,M,M,M,M,RM,RM,R)
call MMUL(N,N,N,N,N,N ’




return
end
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function [Q,R,P,ea,va,Q,Jbar]=LQREA(a,b,ed,Fe,vd, Fv,tol, rcode)

$LQREA Eigenstructure assignment using the Linear Quadratic
Regulator.
Form is

[Q,R,P,ea,va,theta,Jbar]=LQREA(a,b,ed, Fe,vd, Fv,tol, rcode)
Input parameters,
a=nxn A matrix, b=nxm B matrix
ed=nxn diagonal matrix of desired eigenvalues
Fe=nx1l matrix weighting each eigenvalue
vd=nxn matrix whose columns are the desire eigenvectors
-must be in same order as associated eigenvalues
Fv=nxn matrix whose elements weight corresponding
elements of vd
tol=convergence tolerance for performance index
rcode=determines type of R
(1) R=ro*I
(2) R=[diag]
(other) R=positive definite
Output parameters,
ea=nxn diagonal matrix of acheivable eigenvalues
va=nxn matrix of acheivable eigenvectors
f=nx1 vector of value that minimizes the difference
between desired and acheivable eigenvectors
Jbar=final value of performance index
=unique positive definite solution to Riccati equation
Q,R=final state and control weighting matrices
[nr,ncl=size(a):
[mr,mc)=size(b):
n=nr;
m=mc;
at=a(:);
bt=b(:):
for i=1l:n,
edd(i,1l)=Fe(i):
edd(i,2)=real(ed(i,i)):
edd(i,3)=imag(ed(i,i)):
end
vdd(:,1)=Fv(:);
vdd(:,2)=real(vd(:)
vdd(:,3)=imag(vd(:)
ievalmax=1000;
save brad.dat n at m bt edd vdd tol ievalmax rcode /ascii
!run eigspace
load ppout.dat
count=1;
n=ppout (count) ;
count=count+1;
m=ppout (count) ;
count=count+1;
n2=n*n;
m2=m*m;
nm=n*m;

O O\ o0 00 o0 O O N A N N A O AN O A O A A I P A o o

) :
I
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R=zeros(m,m) ;
R(:)=ppout (count:count+m2-1) ;
count=count+m2;
Q=zeros(n,n);
Q(:)=ppout (count:count+n2-1) ;
count=count+n2;
P=zeros(n,n):;
P(:)=ppout (count:count+n2-1);
count=count+n2;
K=zeros(m,n) ;
K(:)=ppout (count:count+nm=-1) ;
count=count+nm;
ea=zeros(n,n);
for i=1l:n
ea(i,i)=ppout (count)+j*ppout (count+1) ;
count=count+2;
end
va=zeros(n,n);
for jj=1:n
for i=1:n
va(i,jJj)=ppout(count)+j*ppout (count+1) ;
count=count+2;
end
end
theta=zeros(n,n):
for i=1:n
theta (i, i)=ppout (count)+j*ppout (count+1);
count=count+2;
end
Jbar=ppout (count) ;
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